K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2020

- 2x2 + x - 1 = - 2x2 + x - 1/8 - 7/8

= - ( 2x2 - x + 1/8 ) - 7/8

= - 2( x2 - 1/2x + 1/16 ) - 7/8

= - 2( x - 1/4 )2 - 7/8

Vì ( x - 1/4 )2 \(\ge\)0\(\forall\)x =>  - 2( x - 1/4 )2 - 7/8\(\le\)- 7/8

Dấu "=" xảy ra <=> - 2( x - 1/4 )2 = 0 <=> x - 1/4 = 0 <=> x = 1/4

Vậy GTLN của bt trên = - 7/8 <=> x = 1/4

14 tháng 11 2020

-2x2 + x - 1

= -2( x2 - 1/2x + 1/16 ) - 7/8

= -2( x - 1/4 )2 - 7/8 ≤ -7/8 ∀ x

Dấu "=" xảy ra khi x = 1/4

=> GTLN của biểu thức = -7/8 <=> x = 1/4

2 tháng 10 2023

a) Sửa đề: Tìm GTNN

A = |2x - 1| - 4

Ta có:

|2x - 1| ≥ 0 với mọi x ∈ R

⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R

Vậy GTNN của A là -4 khi x = 1/2

b) B = 1,5 - |2 - x|

Ta có:

|2 - x| ≥ 0 với mọi x ∈ R

⇒ -|2 - x| ≤ 0 với mọi x ∈ R

⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R

Vậy GTLN của B là 1,5 khi x = 2

c) C = |x - 3| ≥ 0 với mọi x ∈ R

Vậy GTNM của C là 0 khi x = 3

d) D = 10 - 4|x - 2|

Ta có:

|x - 2| ≥ 0 với mọi x ∈ R

⇒ 4|x - 2| ≥ 0 với mọi x ∈ R

⇒ -4|x - 2| ≤ 0 với mọi x ∈ R

⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R

Vậy GTLN của D là 10 khi x = 2

\(C\ge30\forall x,y\)

Dấu '=' xảy ra khi x=1 và y=-1

27 tháng 11 2022

Bạn có thể trả lời cụ thể hơn Ko

14 tháng 8 2020

Đặt:     \(A=\left(x-3\right)\left(x+3\right)+2\left(2x+1\right)^2\)

=>       \(A=x^2-9+2\left(4x^2+4x+1\right)\)

=>       \(A=x^2-9+8x^2+8x+2\)

=>       \(A=9x^2+8x-7\)

=>       \(A=\left(3x+\frac{4}{3}\right)^2-\frac{79}{9}\)

Có:      \(\left(3x+\frac{4}{3}\right)^2\ge0\forall x\Rightarrow\left(3x+\frac{4}{3}\right)^2-\frac{79}{9}\ge-\frac{79}{9}\)

=>      \(A\ge-\frac{79}{9}\)

DẤU "=" XẢY RA <=>     \(\left(3x+\frac{4}{3}\right)^2=0\)

<=>     \(x=-\frac{4}{9}\)

Vậy A min =     \(-\frac{79}{9}\)      <=>       \(x=-\frac{4}{9}\)

15 tháng 8 2020

( x - 3 )( x + 3 ) + 2( 2x + 1 )2

= x2 - 9 + 2( 4x2 + 4x + 1 )

= x2 - 9 + 8x2 + 8x + 2

= 9x2 + 8x - 7

= 9x2 + 8x + 16/9 - 79/9

= ( 3x + 4/3 )2 - 79/9

\(\left(3x+\frac{4}{3}\right)^2\ge0\forall x\Rightarrow\left(3x+\frac{4}{3}\right)^2-\frac{79}{9}\ge-\frac{79}{9}\)

Dấu " = " xảy ra <=> 3x + 4/3 = 0 => x = -4/9

=> GTNN của biểu thức = -79/9 <=> x =  -4/9

25 tháng 11 2021

đặt A=\(\frac{x^2}{x^2}-\frac{2x}{x^2}+\frac{2013}{x^2}\)\(=\)\(1-2\frac{1}{x}+2013\frac{1}{x^2}\)

đặt \(\frac{1}{x}=a\)\(=>\)\(\frac{1}{x^2}=a^2\)

khi đó \(A=2013a^2-2a+1\)

  \(=>\)\(2013A=\left(2013a\right)^2-4026a+2013\)

                                  \(=\left(2013a-1\right)^2+2012\)

                  bạn tự giải tiếp nhé :))

28 tháng 1 2020

a) Ta có : \(A=-6x+x^2+11\)

\(\Rightarrow A=\left(x^2-6x+9\right)+2\)

\(\Rightarrow A=\left(x-3\right)^2+2\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy \(minA=2\Leftrightarrow x=3\)

b) \(B=-1+2x^x+10x\)

\(\Rightarrow\)Tớ đang thắc mắc cái chỗ 2xx :)))

9 tháng 8 2023

Ta có: 

\(C=\sqrt{-x^2+6x}\) 

Mà: \(\sqrt{-x^2+6x}\ge0\) 

Dấu "=" xảy ra khi:

\(\sqrt{-x^2+6x}=0\)

\(\Leftrightarrow\sqrt{-x\left(x-6\right)}=0\)

\(\Leftrightarrow-x\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

Vậy: \(C_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

9 tháng 8 2023

\(D=\sqrt{6x-2x^2}\)

Mà: \(\sqrt{6x-2x^2}\ge0\)

Dấu "=" xảy ra khi:

\(\sqrt{6x-2x^2}=0\)

\(\Leftrightarrow\sqrt{2x\left(3-x\right)}=0\)

\(\Leftrightarrow2x\left(3-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy: \(D_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

1 tháng 9 2019

\(F=-x^4+x^2-4y^2+2x-4y+2000.\)

\(=-x^4+2x^2-1-x^2+2x-1-4y^2-4y-1+2003\)

\(=-\left(x^2-1\right)^2-\left(x-1\right)^2-\left(2y+1\right)^2+2003\)

\(=-\left(x-1\right)^2\left(x+1\right)^2-\left(x-1\right)^2-\left(2y+1\right)^2+2003\)

\(\Rightarrow F_{min}=2003\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(2y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-\frac{1}{2}\end{cases}}}\)

Vậy \(F_{min}=2003\Leftrightarrow x=1;y=-\frac{1}{2}\)

17 tháng 12 2022

C=|2x-3/5|+4/3>=4/3

Dấu = xảy ra khi x=3/10

D=|x-3|+|-x-2|>=|x-3-x-2|=5

Dấu = xảy ra khi -2<=x<=3

Tính GTLN , GTNN: a, A=2x2-6x. b,B=x2+y2-x+6y+10. c,C=x-x2 .... 1tìm x : a) (x+2).(x+3)-(x-2).(x+5)=0. b) (2x+3).(x-4)+(x-5).(x-2)=(x-4).(3x-5). c) (3x-5). ... Viết các biểu thức dưới dạng bình phương của một tổng hoặc hiệu:.

6 tháng 12 2019

A = 2x2 - 6x - 1

A = 2 . ( x2 - 3x - 1 / 2 )

A = 2 . [ ( x2 - 2 . x . 3 / 2 + ( 3 / 2 )2 - ( 3 / 2 )2 - 1 / 2 ) ]

A = 2 . [ ( x - 3 / 2 )2 - 11 / 4 ]

A = ( x - 3 / 2 )2 - 11 / 2 \(\ge\)11 / 2

Dấu " = " xảy ra \(\Leftrightarrow\)x - 3 / 2 = 0

                             \(\Rightarrow\)x             = 3 / 2

Min A = 11 / 2 \(\Leftrightarrow\)x = 3 / 2

29 tháng 7 2018

a, = x^2 -2xy +y^2 +(x^2-2x+1)+2

    = (x-y)^2 + (x-1)^2 + 2

GTNN bằng 2 khi: x-y=0 và x-1=0

Suy ra: x = y = 1

Vậy GTNN của biểu thức trên là: 2 tại x=y=1

b, = -x^2 -y^2 -1 + 2xy -2x +2y - y^2 + 8y - 16 + 17

    = -(x^2 +y^2+1-2xy+2x-2y)-(y^2 -8y+16)+17

    = -(x-y+1)^2 -(y-4)^2 +17

GTLN bằng 17 khi: x-y+1 =0 và y-4=0

                                   x-4+1=0 và y=4

                                   x=3 và y=4

Vậy GTLN của biểu thức là 17 tại x=3,y=4.

Chúc bạn học tốt.