K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2020

Ta có: \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\Rightarrow\frac{4\left(3x-2y\right)}{16}=\frac{3\left(2z-4x\right)}{9}=\frac{2\left(4y-3z\right)}{4}\)(1)

Áp dụng t/c dãy tỉ số = nhau, ta có:

\(\left(1\right)=\frac{4\left(2x-2y\right)+3\left(2z-4x\right)+2\left(4y-3z\right)}{16+9+4}=0\)

\(\Rightarrow\frac{4\left(3x-2y\right)}{16}=0\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\left(2\right),\frac{3\left(2z-4x\right)}{9}=0\Rightarrow2z=4x\Rightarrow\frac{x}{2}=\frac{z}{4}\left(3\right)\)

Từ (2), (3) => đpcm

31 tháng 7 2017

ĐẶT x/2=y/3=z/4=k suy ra x=2k,y=3k và z=4k thay vào xyz=648, ta có: 2k*3k*4k=648

suy ra 24k^3=648 suy ra k= 3 suy ra x=3*2=6,y=3*3=9, z=3*4=12

31 tháng 7 2017

bạn trả lời rõ ra dc k

5 tháng 8 2019

\(\frac{x^5y}{xy^4}=\frac{x^4}{y^3}\)

\(\frac{3\times x^2\times y^5}{9\times x\times y^4}=\frac{xy}{3}\)

5 tháng 7 2017

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{3}=\frac{y}{6}=\frac{z}{8}=\frac{3x}{9}=\frac{2y}{12}=\frac{3x-2y-z}{9-12-8}=\frac{20}{-11}\)

=>x=60/-11; y=120/-11; z=160/-11

31 tháng 7 2017

Áp dụng tính chất dãy tỉ số bằng nhau, ta có

\(\frac{x}{3}=\frac{y}{6}=\frac{z}{8}=\frac{3x-2y-z}{3\times3-2\times6-8}=\frac{20}{-11}\)

Do đó: \(x=\frac{-60}{11}\)\(y=\frac{-120}{11}\),\(z=\frac{-160}{11}\)

            

29 tháng 1 2017

P.An hở

16 tháng 8 2019

Ta có 

  \(\frac{x}{2}=\frac{y}{4}=\frac{3z}{5}\)\(\Rightarrow\)\(\frac{3x}{6}=\frac{3y}{12}=\frac{3z}{5}\)

Từ \(\frac{3x}{6}=\frac{3y}{12}=\frac{3z}{5}\)theo tính chất của dãy tỉ số bằng nhau, ta có :

    \(\frac{3x}{6}=\frac{3y}{12}=\frac{3z}{5}=\frac{3x-3y+3z}{6-12+5}=\frac{3\left(x-y+z\right)}{-1}=-15\left(x-y+z=5\right)\) 

Suy ra

  \(\frac{x}{2}=-15\Rightarrow x=-15.2\Rightarrow x=-30\)

  \(\frac{y}{4}=-15\Rightarrow y=-15.4\Rightarrow y=-60\)

  \(\frac{3z}{5}=-15\Rightarrow3z=-15.5\Rightarrow z=-75\div3\Rightarrow z=-25\)

               Vậy \(x=-30;y=-60;z=-25\)