một tổ gồm có 4 học sinh nam( trong đó có Việt) và 4 học sinh nữ( trong đó có An). có bao nhiêu cách sắp xếp tổ trên thành 1 hàng ngang sao cho không có 2 bạn cùng giới đứng cạnh nhau và An và Việt cũng không đứng cạnh nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xếp Phúc Đức cạnh nhau có \(2!\) cách
Xếp 4 học sinh nữ có \(4!\) cách
4 học sinh nữ tạo ra 5 khe trống, xếp cặp Phúc-Đức và 3 học sinh nam còn lại vào 5 khe trống này có: \(A_5^4\) cách
\(\Rightarrow2!.4!.A_5^4\) cách xếp thỏa mãn
Ta xét hai trường hợp:
TH1. Bạn nam đứng đầu hàng
Xếp 4 bạn nam vào 4 vị trí 1;3;5;7 có 4!=24 cách xếp 4 bạn nam
Có 4!=24 cách xếp 4 bạn nữ vào 4 vị trí còn lại.
Khi đó số cách sắp xếp là cách.
TH2. Bạn nữ đứng đầu hàng, tương tự TH1, suy ra có 242 cách sắp xếp.
Vậy có 2.242 cách sắp xếp thỏa mãn yêu cầu bài toán.
Chọn D.
Chọn D
Xếp ngẫu nhiên tám học sinh thành hàng ngang, có 8! cách. Suy ra n ( Ω ) = 8! = 40320
Gọi A là biến cố cần tính xác suất.
Ta coi Hoàng, Lan, Nam ( Lan ở giữa) là một nhóm. Khi đó vì hai bên nhóm này bắt buộc là nữ nên coi nhóm này là một nam. Vậy có thể coi ta có ba nam và ba nữ.
Khi đó có hai trường hợp xảy ra.
Trường hợp 1: Nam ngồi vị trí lẻ.
Xếp ba nam vào vị trí lẻ có 3! cách.
Xếp ba nữ vào vị trí chẵn có 3! cách.
Hoán vị hai học sinh nam trong nhóm ( Hoàng- Lan- Nam) có 2! cách.
Vậy số cách sắp xếp trong trường hợp này là 3!.3!.2! = 72 cách.
Trường hợp 2: Nam ngồi vị trí chẵn.
Tương tự trường hợp này có 3!.3!.2! = 72 cách.
Suy ra n(A) = 72 + 72 = 144 cách.
Vậy
Xếp 4 bạn nữ: có \(4!\) cách
4 bạn nữ tạo ra 5 khe trống, xếp 2 bạn nam vào 5 khe trống đó: \(A_5^2\) cách
Vậy tổng cộng có \(4!.A_5^2\) cách xếp thỏa mãn
Đầu tiên ta chỉ dung 7 ghế và xếp An, Chi và 5 bạn không thuộc nhóm An, Chi vào 7 ghế. Ta có 7! cách xếp. Sau đó xếp Bình ngồi cạnh An. Có 2! cách. Cuối cùng xếp Chi, Hương ngồi cùng nhóm với Dung. Ta có 3! cách. Theo quy tắc nhân, có 7! 2! 3! = 60480 cách.
- Nếu đánh số theo hàng dọc từ 1 đến 9 thì cần xếp 5 học nữ vào 5 vị trí lẻ nên có 5!cách xếp; và xếp 4 học sinh nam vào 4 vị trí chẵn nên có 4!cách xếp. Theo quy tắc nhân ta có, ta có 4!*5! Cách xếp 9 học sinh thành hàng dọc xen kẽ nam nữ.
Chọn A
Chọn D
Xếp ngẫu nhiên 8 học sinh có 8! cách.
"Buộc" Hoàng, Lan, Nam thành một nhóm. Khi đó vì hai bên nhóm này bắt buộc là nữ nên ta xem nhóm ba người này là một nam. Vậy có ba nam và ba nữ.
Trường hợp 1: nam ngồi vị trí lẻ.
Xếp 3 nam vào 3 vị trí lẻ: 3!
Xếp 3 nữ vào 3 vị trí chẵn: 3!
Hoán vị hai học sinh nam trong nhóm: 2!
Suy ra số cách xếp trong trường hợp này là: 3!.3!.2!=72 cách
Trường hợp 2: nam ngồi vị trí chẵn
Tương tự có 72 cách
Vậy có 72 + 72 = 144 cách xếp tám học sinh không có hai học sinh cùng giới đứng cạnh nhau, đồng thời Lan đứng cạnh Hoàng và Nam.
Suy ra xác suất cần tìm là P = 144 8 ! = 1 280 .
a: Coi 3 bạn nữ như 1 người
Số cách xếp là:
\(8!\cdot3!\)(cách)
b: Số cách xếp là:
\(10!-8!\cdot3!\left(cách\right)\)
jdf tg