K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2019

Chọn D

Xếp ngẫu nhiên tám học sinh thành hàng ngang, có 8! cách. Suy ra  n ( Ω ) = 8! = 40320

Gọi A là biến cố cần tính xác suất.

Ta coi Hoàng, Lan, Nam ( Lan ở giữa) là một nhóm. Khi đó vì hai bên nhóm này bắt buộc là nữ nên coi nhóm này là một nam. Vậy có thể coi ta có ba nam và ba nữ.

Khi đó có hai trường hợp xảy ra.

Trường hợp 1: Nam ngồi vị trí lẻ.

Xếp ba nam vào vị trí lẻ có 3! cách.

Xếp ba nữ vào vị trí chẵn có 3! cách.

Hoán vị hai học sinh nam trong nhóm ( Hoàng- Lan- Nam) có 2! cách.

Vậy số cách sắp xếp trong trường hợp này là 3!.3!.2! = 72 cách.

Trường hợp 2: Nam ngồi vị trí chẵn.

Tương tự trường hợp này có 3!.3!.2! = 72 cách.

Suy ra n(A) = 72 + 72 = 144 cách.

Vậy 

11 tháng 10 2018

Đáp án D.

19 tháng 7 2017

Đáp án B

– Số phần tử của không gian mẫu  n Ω =10!

* Xếp 10 học sinh trên một hàng ngang sao cho 5 học sinh nam xen kẽ 5 học sinh nữ có 2 cách xếp.

* Xét trong 2 cách xếp trên các khả năng Hoàng và Lan đứng liền kề nhau:

+ Xếp 8 học sinh trên một hàng ngang sao cho 4 học sinh nam xen kẽ 4 học sinh nữ có 2 cách xếp.

+ Với mỗi cách xếp 8 học sinh trên có 9 khoảng trống tạo ra. Với mỗi khoảng trống trên, xếp Hoàng và Lan vào khoảng trống này để được 5 học sinh nam xen kẽ 5 học sinh nữ có 1 cách xếp.

xxxx

Suy số cách xếp 5 học sinh nam xen kẽ 5 học sinh nữ mà Hoàng và Lan đứng kề nhau là: 2.9

Vậy số phần tử của A là:  n =2-2.9=18432.

9 tháng 1 2017

Chọn A

Ta đánh số các vị trí từ 1 đến 8.

Số phần tử không gian mẫu là 

Gọi A là biến cố: “xếp được tám bạn thành hàng dọc thỏa mãn các điều kiện: đầu hàng và cuối hàng đều là nam và giữa hai bạn nam gần nhau có ít nhất một bạn nữ, đồng thời bạn Quân và bạn Lan không đứng cạnh nhau”.

TH1: Quân đứng vị trí 1 hoặc 8 => có 2 cách

Chọn một trong 3 bạn nam xếp vào vị trí 8 hoặc 1 còn lại => có 3 cách.

Xếp 2 bạn nam còn lại vào 2 trong 4 vị trí 3,4,5,6 mà 2 nam không đứng cạnh nhau

=> có 6 cách

Xếp vị trí bạn Lan có 3 cách.

Xếp 3 bạn nữ vào 3 vị trí còn lại có 3! cách.

=> TH này có: 2.3.6.3.3! = 648 cách

TH2: Chọn 2 bạn nam ( khác Quân) đứng vào 2 vị trí 1 hoặc 8 có A 3 2  cách.

Xếp Quân và  bạn nam còn lại vào 2 trong 4 vị trí 3,4,5,6 mà 2 nam không đứng cạnh nhau => có 6 cách

Xếp vị trí bạn Lan có 2 cách.

Xếp 3 bạn nữ vào 3 vị trí còn lại có 3! cách.

=> TH này có: 

Vậy xác suất của biến cố A là 

3 tháng 1 2018

Đáp án C

Số cách xếp ngẫu nhiên là 10!.

Ta tìm số cách xếp thoả mãn:

Đánh số hàng từ 1 đến 10. Có hai khả năng:

5 nam xếp vị trí lẻ và 5 nữ xếp vị trí chẵn có 5!x5!= 120 2

5 nam xếp vị trí chẵn và 5 nữ xếp vị trí lẻ có 5!x5!= 120 2

Theo quy tắc cộng có  120 2 +  120 2 =2x  120 2 cách xếp thoả mãn.

Vậy xác suất cần tính  2 ( 5 ! ) 2 10 ! = 1 126

NV
22 tháng 12 2022

Xếp Phúc Đức cạnh nhau có \(2!\) cách

Xếp 4 học sinh nữ có \(4!\) cách

4 học sinh nữ tạo ra 5 khe trống, xếp cặp Phúc-Đức và 3 học sinh nam còn lại vào 5 khe trống này có: \(A_5^4\) cách

\(\Rightarrow2!.4!.A_5^4\) cách xếp thỏa mãn

23 tháng 6 2017

Chọn C

Số phần tử của không gian mẫu là 

Gọi A là biến cố "không có hai học sinh nữ nào đứng cạnh nhau".

Mỗi phần tử của A tương ứng với 1 hàng ngang gồm 11 bạn đã cho mà không có hai nữ xếp cạnh nhau. Để xếp được 1 hàng như vậy ta thực hiện liên tiếp hai bước:

Bước 1: Xếp 6 bạn nam thành một hàng ngang, có 6!= 720 cách

Bước 2: Xếp 5 bạn nữ vào 7 vị trí xen giữa hai nam hoặc ngoài cùng (để 2 nữ không cạnh nhau), có  A 7 5 = 2520 cách.

Vậy n(A) =720.2520 = 1814400

Xác suất cần tìm là 

13 tháng 11 2017

Chọn B

Số phần tử của không gian mẫu là số cách sắp xếp 8 học sinh vào 8 chỗ ngồi khác nhau. Suy ra  n ( Ω ) = 8!

Gọi A là biến cố xếp 8 học sinh sao cho mỗi học sinh nam đều ngồi đối diện với một học sinh nữ và không có hai học sinh cùng giới ngồi cạnh nhau. Ta đánh số các chỗ ngồi từ 1 đến 8 như sau:

Dãy 1:

1

2

3

4

Dãy 2:

8

7

6

5

Để sắp xếp các học sinh ngồi vào vị trí thỏa mãn yêu cầu bài toán ta sắp xếp như sau:

Trường hợp 1: 4 học sinh nam ngồi vào các số lẻ, 4 học sinh nữ ngồi vào các số chẵn. Trường hợp này có 4!4! cách.

Trường hợp 2: 4 học sinh nam ngồi vào các số chẵn, 4 học sinh nữ ngồi vào các số lẻ. Trường hợp này có 414! cách.

Do đó n(A) = 2.4!.4!

Vậy xác suất của biến cố A là 

11 tháng 8 2018

Đáp án A

Kí hiệu học sinh các lớp 12A, 12B, 12C lần lượt là A, B, C

Ta sẽ xếp 5 học sinh của lớp 12C trước, khi đó xét các trường hợp sau:

TH1: CxCxCxCxCx với x thể hiện là ghế trống. Khi đó, số cách xếp là vaKyAgiT4fW5.png cách.

TH2: xCxCxCxCxC giống với TH1=> có nqALJgsUt5je.pngcách xếp.

TH3: CxxCxCxCxC với xx là hai ghế trống liền nhau.

Chọn 1 học sinh lớp 12A và 1 học sinh lớp 12B vào hai ghế trống đó => FOzv5wXVJWUi.png cách xếp.

Ba ghế trống còn lại ta sẽ xếp 3 học sinh còn lại của 2 lớp 12A-12B => pAH9u5tcEGSq.png cách xếp.

Do đó, TH3 có kNjTHA2P59Mg.png cách xếp.

Ba TH4. CxCxxCxCxC.

TH5. CxCxCxxCxC.

TH6. CxCxCxCxCxx tương tự TH3.

Vậy có tất cả pjTQ1y4d4ZMU.png cách xếp cho các học sinh.

Suy ra xác suất cần tính là

gRkbfkT04FgQ.png

3 tháng 11 2018