Biết các cạnh của 1 tam giác tỉ lệ với 4;5;3 và chu vi của nó bằng 120cm. Tính các cạnh của tam giác đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi các cạnh của tam giác lần lượt là x;y;z.
Theo đề ta có:
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}\) và \(x+y+z=22\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{2+4+5}=\frac{22}{11}=2\)
\(\hept{\begin{cases}\frac{x}{2}=2\Rightarrow x=2.2=4\\\frac{y}{4}=2\Rightarrow y=2.4=8\\\frac{z}{5}=2\Rightarrow z=2.5=10\end{cases}}\)
Vậy độ dài của 3 cạnh tam giác lần lượt là 4;8;10
gọi 3 cạnh của tam giác ấy là a,b,c
theo bài ra ta có a/2=b/4=c/5
đặt a/2=b/4=c/5=k
=>a=2k;b=4k;c=5k
ta có a+b+c=22 hay 2k+4k+5k=22
11k=22
k=2
=>a=4;b=8;c=10
Gọi độ dài 3 cạnh của tam giác lần lượt là a,b,c
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{2+4+5}=\frac{44}{11}=4\)
\(\Rightarrow\frac{a}{2}=4\Rightarrow a=4.2=8\left(m\right)\)
\(\frac{b}{4}=4\Rightarrow b=4.4=16\left(m\right)\)
\(\frac{c}{5}=4\Rightarrow c=4.5=20\left(m\right)\)
Vậy độ dài 3 cạnh của tam giác đó lần lượt là 8m, 16m, 20m
(+)G/s cạnh k là cạnh góc vuông => 4 là cạnh huyền
k^2 = 4^2 - 3^2 = 7 => k = căn 7 ( loại k > 4 )
(+) g/s k là cạnh huyền
=> k^2 = 3^2 + 4^2 = 25 => k = 5 ( tm)
Vậy k = 5
gọi chiều dái các cạnh lần lượt là a;b;c
Ta có c là cạnh huyền a;b là các cạnh góc vuông
Theo định lí Py-ta-go ta có: c2=a2+b2
mak c=102
=> a2+b2=1022=10404
Theo đề a/8=b/15
Áp dụng tính chất dãy tỉ số = nhau:
=> \(\frac{a^2}{8^2}=\frac{b^2}{15^2}=\frac{a^2+b^2}{8^2+15^2}=\frac{10404}{289}=36\)
a=36.8=288cm
b=36.15=540cm
gọi cạnh huyền là c, 2 cạnh góc vuông lần lượt là a và b.
Áp dụng định lí pi ta gô về tam giác vuông ta có:
a2+b2=c2=1022=10404(cm)
Mặt khác do 2 cạnh góc vuông tỉ lệ với 8:15
=>a/8=b/15
Bình phương 2 vế ta được:
a2/64=b2/225
Theo tính chất dãy các tỉ số bằng nhau, ta được:
a2/64=b2/225=a2+b2/64+225=10404/289=36
=>a2=36.64=>a=48
=>b2=36.225=90
Vậy 2 cạnh góc vuông cần tìm là 48cm và 90cm.