rút gọn biểu thức
P=(5-x)(x+5)+(x-3)^2+5x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P=x^3+3/5x^2y-3xy-3/5x^2y-xy+x^3
=2x^3-4xy
=2*(-2)^3-4*(-2)*1/3
=-16+8/3=-40/3
ĐKXĐ: \(x\ge0;x\ne4\)
\(P=\dfrac{x+\sqrt{x}}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}+2}+\dfrac{x-6\sqrt{x}+4}{x-4}\)
\(=\dfrac{\left(x+\sqrt{x}\right)\left(\sqrt{x}+2\right)-\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+x-6\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x\sqrt{x}+2x+x+2\sqrt{x}-\left(2x-4\sqrt{x}-\sqrt{x}+2\right)+x-6\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x\sqrt{x}+2x+x+2\sqrt{x}-2x+4\sqrt{x}+\sqrt{x}-2+x-6\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x\sqrt{x}+2x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}\left(x+1\right)+2\left(x+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\left(x+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{x+1}{\sqrt{x}-2}\)
Khi \(x=9+4\sqrt{5}\)
Ta có: \(4+4\sqrt{5}+5=2^2+2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2=\left(2+\sqrt{5}\right)^2\)
\(\Rightarrow\sqrt{x}=2+\sqrt{5}\)
\(\Rightarrow P=\dfrac{\left(2+\sqrt{5}\right)^2+1}{2+\sqrt{5}-2}=\dfrac{9+4\sqrt{5}+1}{\sqrt{5}}=\dfrac{10+4\sqrt{5}}{\sqrt{5}}=4+2\sqrt{5}\)
Vậy \(P=4+2\sqrt{5}\) khi \(x=9+4\sqrt{5}\).
\(D=\dfrac{x\sqrt{x}+2x+x+2\sqrt{x}-2x+4\sqrt{x}+\sqrt{x}-2+x-6\sqrt{x}+4}{x-4}\)
\(=\dfrac{x\sqrt{x}+2x+2}{x-4}\)
Khi x=9+4căn 5 thì \(D=\dfrac{\left(9+4\sqrt{5}\right)\left(\sqrt{5}+2\right)+2\sqrt{5}+4+2}{\sqrt{5}-2}\)
\(=\dfrac{9\sqrt{5}+18+20+8\sqrt{5}+2\sqrt{5}+6}{\sqrt{5}-2}\)
=(44+19căn 5)*(căn 5+2)
=44căn 5+88+95+38căn 5
=82căn 5+183
Ta có: \(P=\left(\dfrac{x-2\sqrt{x}+3}{x-2\sqrt{x}-3}-\dfrac{x}{x-3\sqrt{x}}\right):\dfrac{1-\sqrt{x}}{3-\sqrt{x}}\)
\(=\left(\dfrac{x\sqrt{x}-2x+3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}-\dfrac{x\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}-1}{\sqrt{x}-3}\)
\(=\dfrac{x\sqrt{x}-2x+3\sqrt{x}-x\sqrt{x}-x}{\sqrt{x}\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)
\(=\dfrac{-3x+3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-3\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-3}{\sqrt{x}+1}\)
\(\text{ P = (2x-1).4x^2+2x+1+(x+1)x^2-x+1}\)
\(\text{P =}\) \(\text{[(2x-1) . 4x^2 ]}\)\(\text{[(x+1) .x^2]}\)
\(\text{P = }\) \(\text{8x^3 - 4x^2 + 2x^3 + 2x^2 + 2x + 1 + x^3 - x + 1}\)
\(\text{P =}\) \(\text{(8x^3 + 2x^3 + x^3) + (-4x^2 + 2x^2) + (2x - x) + (1 + 1)}\)
\(\text{P =}\) \(\text{11x^3 - 2x^2 + x + 2}\)
Ta có: \(P=\left(1-\dfrac{x-3\sqrt{x}}{x-9}\right):\left(\dfrac{\sqrt{x}-3}{2-\sqrt{x}}+\dfrac{\sqrt{x}-2}{3+\sqrt{x}}-\dfrac{9-x}{x+\sqrt{x}-6}\right)\)
\(=\left(1-\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\left(\dfrac{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\dfrac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\dfrac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)
\(=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+3}\right):\left(\dfrac{-\left(x-9\right)+x-4\sqrt{x}+4-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)
\(=\dfrac{\sqrt{x}+3-\sqrt{x}}{\sqrt{x}+3}:\dfrac{-x+9+2x-4\sqrt{x}-5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{x-4\sqrt{x}+4}\)
\(=\dfrac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)^2}=\dfrac{3}{\sqrt{x}-2}\)
Ta có: \(P=\left(\dfrac{3x-6\sqrt{x}}{x\sqrt{x}-2x}-\dfrac{1}{2-\sqrt{x}}+\dfrac{\sqrt{x}-3}{\sqrt{x}}\right)\cdot\left(1-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)
\(=\left(\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{x\left(\sqrt{x}-2\right)}+\dfrac{1}{\sqrt{x}-2}+\dfrac{\sqrt{x}-3}{\sqrt{x}}\right)\cdot\left(\dfrac{\sqrt{x}-2}{\sqrt{x}-2}-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)
\(=\left(\dfrac{3\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-2}\)\(=\dfrac{3\sqrt{x}-6+\sqrt{x}+x-5\sqrt{x}+6}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}-2}\)
\(=\dfrac{x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}-2}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}-2}\)
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)^2}\)
\(P=\dfrac{\sqrt{x}+3-\sqrt{x}+3}{x-9}:\dfrac{1}{\sqrt{x}-3}\)
\(=\dfrac{6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\left(\sqrt{x}-3\right)=\dfrac{6}{\sqrt{x}+3}\)
\(P=\dfrac{\sqrt{x}+3-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\sqrt{x}-3\)
\(P=\dfrac{6}{\sqrt{x}+3}\)
\(P=\left(\dfrac{x}{x\sqrt{x}-4\sqrt{x}}-\dfrac{6}{3\sqrt{x}-6}+\dfrac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\dfrac{10-x}{\sqrt{x}+2}\right)\)
\(P=\left(\dfrac{\sqrt{x}}{x-4}-\dfrac{2\left(\sqrt{x}+2\right)}{x-4}+\dfrac{\sqrt{x}-2}{x-4}\right):\left(\dfrac{x-4+10-x}{\sqrt{x}+2}\right)\)
\(P=\left(\dfrac{-6}{x-4}\right):\left(\dfrac{6}{\sqrt{x}+2}\right)=\dfrac{-1}{\sqrt{x}-2}\)
P=(5-x)(x+5)+(x-3)^2+5x
=25-x^2+x^2-6x+9+5x
=-x+34