tìm điểm cố định mà (d) đi qua
(d) : y = 2mx - m-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi M (x; y) là điểm cố định cần tìm, khi đó
( 5 – 2 m ) x + m + 1 = y đúng với mọi m
− 2 m x + m + 1 + 5 x – y = 0 đúng với mọi m
m ( − 2 x + 1 ) + 1 – y + 5 x = 0 đúng với mọi m
⇔ − 2 x + 1 = 0 1 − y + 5 x = 0 ⇔ x = 1 2 1 − y + 5. 1 2 = 0 ⇔ x = 1 2 y = 7 2 ⇒ M 1 2 ; 7 2
Vậy điểm M 1 2 ; 7 2 là điểm cố định cần tìm
Đáp án cần chọn là: D
a:
Sửa đề: \(I\left(\dfrac{1}{2};-3\right)\)
Thay \(x=\dfrac{1}{2};y=-3\) vào (d): \(y=\left(1-2m\right)x+m-\dfrac{7}{2}\), ta được:
\(\left(1-2m\right)\cdot\dfrac{1}{2}+m-\dfrac{7}{2}=-3\)
=>\(\dfrac{1}{2}-m+m-\dfrac{7}{2}=-3\)
=>\(\dfrac{1}{2}-\dfrac{7}{2}=-3\)
=>-3=-3(đúng)
vậy: I(1/2;-3) là điểm cố định mà (d): \(y=\left(1-2m\right)x+m-\dfrac{7}{2}\) luôn đi qua
b: \(\left(d\right):y=\left(2m+1\right)x+m-2\)
\(=2mx+x+m-2\)
\(=m\left(2x+1\right)+x-2\)
Điểm mà (d) luôn đi qua có tọa độ là:
\(\left\{{}\begin{matrix}2x+1=0\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{2}-2=-\dfrac{5}{2}\end{matrix}\right.\)
Gọi \(A\left(x;y\right)\) là điểm cố định mà (d) luôn đi qua
\(\Rightarrow y=2mx+m+1\Rightarrow2mx+m+1-y=0\)
Vì khi m thay đổi thì (d) vẫn đi qua điểm A \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=m+1\end{matrix}\right.\)
\(\Rightarrow\) (d) luôn đi qua điểm \(A\left(0,m+1\right)\)
\(a,d//d_1\Leftrightarrow\left\{{}\begin{matrix}m+2=-2\\m\ne3\end{matrix}\right.\Leftrightarrow m=-4\\ b,d\perp d_2\Leftrightarrow\dfrac{1}{3}\left(m+2\right)=-1\Leftrightarrow m+2=-3\Leftrightarrow m=-5\\ c,d.qua.N\left(1;3\right)\Leftrightarrow x=1;y=3\Leftrightarrow3=m+2+m\\ \Leftrightarrow2m=1\Leftrightarrow m=\dfrac{1}{2}\)
Giả sử đường thẳng d luôn đi qua điểm cố định \(I\left(x_0;y_0\right)\) \(\Rightarrow\) với mọi m ta luôn có:
\(y_0=\left(m+1\right)x_0-m+2\)
\(\Leftrightarrow m\left(x_0-1\right)+x_0-y_0+2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x_0-1=0\\x_0-y_0+2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=1\\y_0=3\end{matrix}\right.\)
Vậy \(I\left(1;3\right)\)
Gọi M (x; y) là điểm cố định cần tìm khi đó
3 m x – ( m + 3 ) = y đúng với mọi m
3 m x – m – 3 – y = 0 đúng với mọi m
m ( 3 x – 1 ) + − 3 – y = 0 đúng với mọi m
⇔ 3 x − 1 = 0 − 3 − y = 0 ⇔ x = 1 3 y = − 3 ⇒ M 1 3 ; − 3
Vậy điểm M 1 3 ; − 3 là điểm cố định cần tìm.
Đáp án cần chọn là: B
y=(m-3)x+1-2m
=mx-3x+1-2m
=m(x-2)-3x+1
Tọa độ điểm P cố định mà (d) luôn đi qua là:
\(\left\{{}\begin{matrix}x-2=0\\y=-3x+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2\\y=-3\cdot2+1=-5\end{matrix}\right.\)
=>a=2; b=-5
xét \(y=2mx-m-1\Leftrightarrow m\left(2x-1\right)=y+1\)
do đso điểm cố định phải thỏa mãn \(\hept{\begin{cases}2x-1=0\\y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}}\)
Vậy điểm cố định mà (d) đi qua là \(\left(\frac{1}{2};-1\right)\)