E=\(\frac{1-\frac{1}{3}+\frac{1}{1+\frac{1}{3}}}{1-\frac{1}{3}-\frac{1}{1+\frac{1}{3}}}\)
giúp mk vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{\left(5.2\right)}{3.2}-\frac{1}{2}x+\frac{1}{3}+\frac{1}{5}=\frac{\left(3.2\right)}{5}\)
\(\Leftrightarrow\)\(\frac{1}{2}-\frac{1}{2}x+\frac{8}{15}=\frac{6}{5}\)
\(\Leftrightarrow\)\(\frac{1}{2}-\frac{2}{3}=\frac{1}{2}x\)
\(\Leftrightarrow\)\(-\frac{1}{6}=\frac{1}{2}x\)
\(\Leftrightarrow\)x=-1/3
b) VT= \(\frac{\left(3.5.4.2\right)}{5.2.3}=4\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right):6+4=4:\frac{2}{3}=6\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right):6=2\)
\(\Leftrightarrow x-\frac{1}{2}=12\)
=> x= 12,5
\(=\frac{2\left(\sqrt{3}-1\right)}{2+\sqrt{4+2\sqrt{3}}}+\frac{2\left(\sqrt{3}+1\right)}{2-\sqrt{4-2\sqrt{3}}}=\frac{2\left(\sqrt{3}-1\right)}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{2\left(\sqrt{3}+1\right)}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\frac{2\left(\sqrt{3}-1\right)}{2+\sqrt{3}+1}+\frac{2\left(\sqrt{3}+1\right)}{2-\sqrt{3}+1}=\frac{2\left(\sqrt{3}-1\right)}{3+\sqrt{3}}+\frac{2\left(\sqrt{3}+1\right)}{3-\sqrt{3}}\)
\(=\frac{2\left(\sqrt{3}-1\right)\left(3-\sqrt{3}\right)+2\left(\sqrt{3}+1\right)\left(3+\sqrt{3}\right)}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}=\frac{16\sqrt{3}}{6}=\frac{8\sqrt{3}}{3}\)
\(\Leftrightarrow2.\left(\frac{-1}{2}\right).\left(\frac{2}{3}\right)^2-3\left(-\frac{1}{3}\right)^2.\frac{2}{9}:x=3.\left(-\frac{1}{2}\right)-\frac{2}{3}\)
\(\Leftrightarrow-\frac{4}{9}-\frac{1}{3}.\frac{2}{9}:x=-\frac{3}{2}-\frac{2}{3}\)
\(\Leftrightarrow-\frac{4}{6}-\frac{2}{27}:x=-\frac{13}{6}\)
\(\Leftrightarrow\frac{2}{27}:x=-\frac{4}{9}:\frac{-13}{6}\)
\(\Leftrightarrow\frac{2}{27}:x=\frac{31}{18}\)
\(\Leftrightarrow x=\frac{2}{27}:\frac{31}{18}\)
\(\Rightarrow x=\frac{4}{93}\)
Vậy \(x=\frac{4}{93}\)
\(\frac{x-1}{1}+\frac{x-1}{2}=\frac{x-1}{3}+\frac{x-1}{4}+\frac{x-1}{5}\)
\(\Leftrightarrow\frac{x-1}{1}+\frac{x-1}{2}-\frac{x-1}{3}-\frac{x-1}{4}-\frac{x-1}{5}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{1}+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}\right)=0\)
Vì \(\frac{1}{1}+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}\ne0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
\(\frac{x-1}{1}+\frac{x-1}{2}=\frac{x-1}{3}+\frac{x-1}{4}+\frac{x-1}{5}\)
\(\Leftrightarrow\frac{x-1}{1}+\frac{x-1}{2}-\frac{x-1}{3}-\frac{x-1}{4}-\frac{x-1}{5}=0\)
\(\Leftrightarrow\left(x-1\right)\left(1+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}\ne0\right)=0\)
\(\Leftrightarrow x=1\)