K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2020

ta có a^2 >= 0

         b^2>=0

         (ab+1/a+b)^2>=0

=> a^2+b^2+(ab+1/a+b)^2>=0                => dpcm

10 tháng 11 2020

Vi \(a^2\ge0\)

\(b^2\ge0\)

\(\left(\frac{ab+1}{a+b}\right)^2\ge0\)

\(\Rightarrow a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge0\)

31 tháng 1 2017

BĐT tương đương

\(a^2+b^2+\frac{a^2b^2+2ab+1}{\left(a+b\right)^2}\ge2\)

<=>\(\left(a+b\right)^2-2+\frac{1}{\left(a+b\right)^2}+\frac{a^2b^2}{\left(a+b\right)^2}+\frac{2ab}{\left(a+b\right)^2}-2ab\ge0\)

<=>\(\left(a+b\right)^2-2.\left(a+b\right).\frac{1}{a+b}+\frac{a^2b^2}{\left(a+b\right)^2}-2.\left(ab-\frac{ab}{\left(a+b\right)^2}\right)\ge0\)

<=>\(\left(a+b-\frac{1}{a+b}\right)^2+\frac{a^2b^2}{\left(a+b\right)^2}-2.\left(\frac{ab\left(a+b\right)^2-ab}{\left(a+b\right)^2}\right)\ge0\)

<=>\(\left(\frac{\left(a+b\right)^2-1}{a+b}\right)^2+\frac{a^2b^2}{\left(a+b\right)^2}-2.\left(\frac{ab\left[\left(a+b\right)^2-1\right]}{\left(a+b\right)\left(a+b\right)}\right)\ge0\)

<=>\(\left(\frac{\left(a+b\right)^2-1}{a+b}\right)^2+\frac{a^2b^2}{\left(a+b\right)^2}-2.\frac{\left(a+b\right)^2-1}{a+b}.\frac{ab}{a+b}\ge0\)

<=>\(\left(\frac{\left(a+b\right)^2-1}{a+b}-\frac{ab}{a+b}\right)^2\ge0\left(\text{luôn đúng}\right)\)

=> dpcm

27 tháng 2 2021

Đặt A =\(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\)

Vì a + b \(\ne\)0 nên A luôn được xác định.

 Giả sử \(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge2\)

\(\Leftrightarrow\frac{\left(a^2+b^2\right)\left(a+b\right)^2}{\left(a+b\right)^2}+\frac{\left(ab+1\right)^2}{\left(a+b\right)^2}-\frac{2\left(a+b\right)^2}{\left(a+b\right)^2}\ge0\)

\(\Leftrightarrow\left(a^2+b^2\right)\left(a+b\right)^2+\left(ab+1\right)^2-2\left(a+b\right)^2\ge0\)(vì a + b \(\ne\)0)

\(\Leftrightarrow[\left(a^2+2ab+b^2\right)-2ab]\left(a+b\right)^2+\left(ab+1\right)^2-2\left(a+b\right)^2\ge0\)

\(\Leftrightarrow[\left(a+b\right)^2-2ab]\left(a+b\right)^2+\left(ab+1\right)^2-2\left(a+b\right)^2\ge0\)

\(\Leftrightarrow\left(a+b\right)^4-2ab\left(a+b\right)^2+\left(ab+1\right)^2-2\left(a+b\right)^2\ge0\)

\(\Leftrightarrow\left(a+b\right)^4-\left[2ab\left(a+b\right)^2+2\left(a+b\right)^2\right]+\left(ab+1\right)^2\ge0\)

\(\Leftrightarrow\left[\left(a+b\right)^2\right]^2-2\left(a+b\right)^2\left(ab+1\right)+\left(ab+1\right)^2\ge0\)

\(\left[\left(a+b\right)^2-\left(ab+1\right)^2\right]^2\ge0\)(luôn đúng)

Dấu bằng xảy ra 

\(\Leftrightarrow\hept{\begin{cases}a+b\ne0\\\Leftrightarrow a=b\end{cases}}\Leftrightarrow a=b\left(a,b\ne0\right)\)

Vậy \(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge\)2 với a, b là các số thỏa mãn a+b \(\ne\)0

27 tháng 2 2021

Dấu bằng xảy ra

\(\Leftrightarrow\hept{\begin{cases}a=b\\a+b\ne0\end{cases}\Leftrightarrow a=b}\)(a,b \(\ne\)0)

Vậy \(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge2\) với a, b là các số thỏa mãn \(a+b\ne0\)

Ta có: \(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge2\)

\(\Leftrightarrow\left(a^2+b^2\right)\left(a+b\right)^2+\left(ab+1\right)^2\ge2\left(a+b\right)^2\)

\(\Leftrightarrow\left(a+b\right)^2\left[\left(a+b\right)^2-2ab\right]-2\left(a+b\right)^2+\left(ab+1\right)^2\ge0\)

\(\Leftrightarrow\left(a+b\right)^4-2ab\left(a+b\right)^2-2\left(a+b\right)^2+\left(ab+1\right)^2\ge0\)

\(\Leftrightarrow\left[\left(a+b\right)^2-ab-1\right]^2\ge0\)(đúng) 

\(\Leftrightarrow dpcm\)

13 tháng 12 2017

⇔(a2+b2)(a+b)2+(ab+1)2≥2(a+b)2

⇔(a+b)2[(a+b)2−2ab]−2(a+b)2+(ab+1)2≥0

⇔(a+b)4−2ab(a+b)2−2(a+b)2+(ab+1)2≥0

⇔[(a+b)2−ab−1]2≥0(đúng) 

           k mình đi

24 tháng 5 2015

ta có:\(a^2+b^2+\left(\frac{1+ab}{a+b}\right)^2=\left(a+b\right)^2+\left(\frac{1+ab}{a+b}\right)^2-2ab\ge2\left(1+ab\right)-2ab=2\)

4 tháng 4 2019

\(BĐT\Leftrightarrow a^2+b^2-2+\left(\frac{ab+1}{a+b}\right)^2\ge0\)

\(\Leftrightarrow a^2+2ab+b^2-2ab-2+\left(\frac{ab+1}{a+b}\right)^2\ge0\)

\(\Leftrightarrow\left(a+b\right)^2-2\left(ab+1\right)+\left(\frac{ab+1}{a+b}\right)^2\ge0\)

\(\Leftrightarrow\left(a+b-\frac{ab+1}{a+b}\right)^2\ge0\) luôn đúng

DD
5 tháng 8 2021

Ta có: 

\(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge2\)

\(\Leftrightarrow a^2+b^2+2ab+\left(\frac{ab+1}{a+b}\right)^2\ge2\left(ab+1\right)\)

\(\Leftrightarrow\left(a+b\right)^2-2\left(a+b\right).\frac{ab+1}{a+b}+\left(\frac{ab+1}{a+b}\right)^2\ge0\)

\(\Leftrightarrow\left(a+b-\frac{ab+1}{a+b}\right)^2\ge0\)

Bất đẳng thức cuối luôn đúng, ta ta biến đổi tương đương nên bất đẳng thức ban đầu cũng đúng. 

Ta có đpcm. 

16 tháng 1 2018

\(a^2+b^2+\left(\dfrac{ab+1}{a+b}\right)^2>hoặc=2\)

<=>\(a^2+b^2+\left(\dfrac{ab+1}{a+b}\right)^2-2>hoặc=0\)

<=>\(\left(a+b\right)^2+\left(\dfrac{ab+1}{a+b}\right)^2-2\left(ab+1\right)>hoặc=0\)

<=>\(\left(a+b-\dfrac{ab+1}{a+b}\right)^2>hoặc=0\)

(đpcm)

chúc bạn học tốt ^ ^

3 tháng 11 2018

Đặt x = a + b; y = ab thì: 
BĐt  tương đương:

\(x^2-2y+\frac{\left(1+y\right)^2}{x^2}\ge2\)

\(\Leftrightarrow x^2\left(x^2-2y\right)+\left(1+y\right)^2-2x^2\ge0\)

\(\Leftrightarrow x^4-2x^2y+y^2+2y+1-2x^2\ge0\)

\(\Leftrightarrow\left(x^2-y-1\right)^2\ge0\left(lđ\right)\)

Đến đây bạn tự kết luận nha

13 tháng 4 2020

Ta có phép biến đổi tương đương:

\(a^2+b^2+\frac{\left(ab+1\right)^2}{\left(a+b\right)^2}\ge2\Leftrightarrow\frac{\left(a+b\right)^2\left(a^2+b^2\right)+\left(ab+1\right)^2}{\left(a+b\right)^2}\ge2\)

\(\Leftrightarrow\left(a+b\right)^2\left(a^2+b^2\right)+\left(ab+1\right)^2\ge2\left(a+b\right)^2\)

\(\Leftrightarrow\left(a+b\right)^2\left[\left(a+b\right)^2-2ab\right]-2\left(a+b\right)^2+\left(ab+1\right)^2\ge0\)

\(\Leftrightarrow\left(a+b\right)^4-2ab\left(a+b\right)^2-2\left(a+b\right)^2+\left(ab+1\right)^2\ge0\)

\(\Leftrightarrow\left(a+b\right)^4-2\left(a+b\right)^2\left(ab+1\right)+\left(ab+1\right)^2\ge0\)

\(\Leftrightarrow\left[\left(a+b\right)^2-ab-1\right]^2\ge0\)(đúng với mọi a,b)

Các bđt trên tương đương với nhau nên bđt cần chứng minh đúng

Vậy \(a^2+b^2+\frac{\left(ab+1\right)^2}{\left(a+b\right)^2}\ge2\)

9 tháng 7 2017

Lần sau đăng ít 1 thôi đăng nhiều ngại làm, bn đăng nhiều nên tui hướng dẫn sơ qua thôi tự làm đầy đủ vào vở

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(a^4+b^4\ge2a^2b^2;b^4+c^4\ge2b^2c^2;c^4+a^4\ge2c^2a^2\)

Cộng theo vế 3 BĐT trên rồi thu gọn

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)

Áp dụng tiếp BĐT AM-GM

\(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2ac\)

Tương tự rồi cộng theo vế có ĐPCM

Bài 2:

Quy đồng  BĐT trên ta có:

\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\) (luôn đúng)

Bài 4: Áp dụng BĐT AM-GM 

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)

Tương tự rồi cộng theo vế

Bài 5: sai đề tự nhien có dấu - :v nghĩ là +

9 tháng 7 2017

ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]