K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

gọi số cần tìm là a ( a nhỏ nhất . a khác 0 )

 ta có a = 3m+2 ( m thuộc N ) => 2a = 6m +4 , chia 3 dư 1

  a = 5n +3 ( n thuộc N) => 2a = 10n + 6 , chia 5 dư 1

  a = 7p + 4 ( p thuộc N) => 2a = 14p +8 , chia 7 dư 1

 do đó 2a - 1 thuộc BC( 3 , 5, 7) . Để a nhỏ nhất thì 2a - 1 = BCNN( 3 ,5,7) = 105 => 2a - 1 = 105 => 2a = 106 =>a =53
 

5 tháng 10 2015

1.Tìm số tự nhiên nhỏ nhất khác 0 mà chia hết cho cả 2,3,4,5 và 6 là số 60

5 tháng 7 2021

TICK CHO MÌNH NHA

Trả lời:

Gọi số tự nhiên đó là a

Ta có: a:6, 5, 4, 3, 2 dư 5, 4, 3, 2, 1

        ➩ a+1 chia hết cho 6, 5, 4, 3, 2

        ➩ a+1 =60

        ➩ a=59

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học...
Đọc tiếp

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.

Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.

Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học sinh của khối 6.

Bài 4: Một số tự nhiên chia cho 7 thì dư 5, chia cho 13 thì dư 4. Nếu đem số đó chia cho 91 thì dư bao nhiêu?

Bài 5: Một số tự nhiên a khi chia cho 7 dư 4, chia cho 9 dư 6. Tìm số dư khi chia a cho 63.

Bài 6: Tìm số tự nhiên n lớn nhất có ba chữ số, sao cho n chia cho 15 và 35 có số dư lần lượt là 9 và 29.

Bài 7: Tìm số tự nhiên nhỏ nhất có ba chữ số chia cho 18; 30; 45 có số dư lần lượt là 8; 20; 35.

0
11 tháng 9 2016

Vì số đó chia 2 , 3 , 4 , 5 , 6 dư 1 , 2 , 3, 4 , 5 nên nếu lấy số đó cộng thêm 1 thì được số mới chỉ hết cho cả 2 , 3 , 4 , 5 , 6. Và số mới đó chia cho 7 dư 1 . 

Số chia hết cho đồng thời 2 và 3 thì chia hết cho 6 ; số chia hết cho 4 thì chia hết cho 2 . Vậy chỉ cần số mới chia hết cho 3 , 4 , 5 là nó chia hết cho cả 2 , 3 , 4 , 5 , 6 . Số chia hết cho 3 , 4 , 5 là các số : 60 , 120 , 180 , ....

Trong các số đó , số chia cho 7 dư 1 là 120 .Vậy số chia hết cho 2 , 3, 4 , 5 , 5 ; chia cho 7 dư 1 là : 120

Vậy số cần tìm là : 120 - 1 = 119

11 tháng 9 2016

Tìm số tự nhiên bé nhất chia cho 2 ,3,4,5,6 thì được các số dư lần lượt là 1,2,3,4,5 và khi chia cho 7 thì không dư .Tím số đó 

Vì số đó chia cho 2; 3; 4; 5; 6 dư 1; 2; 3; 4;5 nên nếu lấy số đó cộng thêm 1 thì được số mới chia hết cho cả 2; 3; 4; 5; 6. Và số mới đó chia cho 7 dư 1.

Số chia hết cho đồng thời 2 và 3 thì chia hết cho 6; số chia hết cho 4 thì chia hết cho 2. Vậy chỉ cần số mới chia hết cho 3; 4; 5 là nó chia hết cho cả 2; 3; 4; 5; 6. Số chia hết cho 3; 4; 5 là các số 60; 120; 180; . . .

Trong các số đó, số chia cho 7 dư 1 là 120. Vậy số chia hết cho 2; 3; 4; 5; 6 và chia cho 7 dư 1 là 120.

Suy ra số cần tìm là 120 - 1 = 119.

18 tháng 11 2016

Gọi số phải tìm là x, ta có 2x-1 chia hết cho 5,7,9,11
=> 2x-1 là bội chung của 5,7,9,11
BCNN(5;7;9;11)=3465
Biến đổi và đưa ra x nhỏ nhất có 9 chữ số:100001633; x lớn nhất có 9 chữ số là:999997268

29 tháng 8 2021

Bài 1: 
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2
​n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 ​chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53

Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9)
 ​chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) ​chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m =  248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài

29 tháng 8 2021

Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).

Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Vậy n = 53 là số tự nhiên nhỏ nhất thỏa điều kiện của đề bài

Bài 2: 

Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).

Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m =  248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài

Bài toán 1: Tìm số tự nhiên bé nhất khác 1 và khi chia số đó cho 2; 3; 4; 5 và 6 thì cùng có số dư bằng 1.Bài toán 2: Tìm số tự nhiên bé nhất sao cho khi chia số đó cho 2; 3; 4; 5 và 6 thì được số dư lần lượt là 1; 2; 3; 4; 5 và 6 thì được số dư lần lượt là 1; 2; 3; 4 và 5.Bài toán 3: Hai số tự nhiên có hiệu là 133 và biết khi lấy số lớn chia cho số bé thì được thương là 4 và số dư là 19. Tìm số...
Đọc tiếp

Bài toán 1: Tìm số tự nhiên bé nhất khác 1 và khi chia số đó cho 2; 3; 4; 5 và 6 thì cùng có số dư bằng 1.

Bài toán 2: Tìm số tự nhiên bé nhất sao cho khi chia số đó cho 2; 3; 4; 5 và 6 thì được số dư lần lượt là 1; 2; 3; 4; 5 và 6 thì được số dư lần lượt là 1; 2; 3; 4 và 5.

Bài toán 3: Hai số tự nhiên có hiệu là 133 và biết khi lấy số lớn chia cho số bé thì được thương là 4 và số dư là 19. Tìm số lớn.

Bài toán 4: Hai số tự nhiên có tổng là 258 và biết khi lấy số lớn chia cho số bé thì được thương là 2 và số dư là 21. Tìm số bé.

Bài toán 5: Hai số tự nhiên có hiệu là 245 và biết khi lấy số lớn chia cho số bé thì được thương là 3 và số dư laf 41. Tìm số lớn.

Ai trả lời cho mk cũng sẽ được tick đúng và đặc biệt là người nhanh nhất. chỉ cần ghi đáp án thôi nha! Mk cảm ơn các bạn

 

3
20 tháng 10 2018

à bài này t học qua rồi

nhưng t ngại làm

bạn chờ  người khác làm nhé

21 tháng 10 2018

ủa mà bài này dễ mà                                                                                                                                                                                             cho hỏi bạn học lớp mấy vậy