tìm các số tự nhiên x,y thõa mãn: \(9x^2-6x+6=3^{2y+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
b) \(\left(2x+1\right).\left(y-3\right)=10\)
\(\Rightarrow\left(2x+1\right)\) và \(\left(y-3\right)\inƯ\left(10\right)=\left\{1;2;5;10\right\}\)
Vì \(\left(2x+1\right)\) là số lẻ nên \(\left(2x+1\right)\in\left\{1;5\right\}\)
Ta có bảng giá trị:
2x+1 | 1 | 5 |
y-3 | 5 | 1 |
x | 1 | 2 |
y | 8 | 4 |
Vậy \(\left(x;y\right)=\left\{\left(1;8\right);\left(2;4\right)\right\}\)
c) \(2xy-x+2y=13\)
\(\Rightarrow x.\left(2y-1\right)+\left(2y-1\right)=12\)
\(\Rightarrow\left(x+1\right).\left(2y-1\right)=12\)
\(\Rightarrow\left(x+1\right)\) và \(\left(2y-1\right)\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\)
Vì \(\left(2y-1\right)\) là số lẻ nên \(\left(2y-1\right)\in\left\{1;3\right\}\)
Ta có bảng giá trị:
x+1 | 12 | 4 |
2y-1 | 1 | 3 |
x | 11 | 3 |
y | 1 | 2 |
Vậy \(\left(x;y\right)=\left\{\left(11;1\right);\left(3;2\right)\right\}\)
Giải: (tiếp)
d) \(6xy-9x-4y+5=0\)
\(\Rightarrow3x.\left(2y-3\right)-4y=-5\)
\(\Rightarrow3x.\left(2y-3\right)-4y+6=1\)
\(\Rightarrow3x.\left(2y-3\right)-2.\left(2y-3\right)=1\)
\(\Rightarrow\left(3x-2\right).\left(2y-3\right)=1\)
\(\Rightarrow\left(3x-2\right)\) và \(\left(2y-3\right)\inƯ\left(1\right)=\left\{1\right\}\)
Ta có bảng giá trị:
3x-2 | 1 |
2y-3 | 1 |
x | 1 |
y | 2 |
Vậy \(\left(x;y\right)=\left\{\left(1;2\right)\right\}\)
e) \(2xy-6x+y=13\)
\(\Rightarrow2x.\left(y-3\right)+\left(y-3\right)=10\)
\(\Rightarrow\left(2x+1\right).\left(y-3\right)=10\)
Còn lại câu e nó giống hệt câu b nha nên câu lm giống nó là đc!
f) \(2xy-5x+2y=148\)
\(\Rightarrow2y.\left(x+1\right)-5x-5=143\)
\(\Rightarrow2y.\left(x+1\right)-5.\left(x+1\right)=143\)
\(\Rightarrow\left(x+1\right).\left(2y-5\right)=143\)
\(\Rightarrow\left(x+1\right)\) và \(\left(2y-5\right)\inƯ\left(143\right)=\left\{1;11;13;143\right\}\)
Ta có bảng giá trị:
x+1 | 1 | 11 | 13 | 143 |
2y-5 | 143 | 13 | 11 | 1 |
x | 0 | 10 | 12 | 142 |
y | 74 | 9 | 8 | 3 |
Vậy \(\left(x;y\right)=\left\{\left(0;74\right);\left(10;9\right);\left(12;8\right);\left(142;3\right)\right\}\)
Chúc bạn học tốt! (Trời mk mất gần 1 tiếng bài này! )
(9x-2)(2y+3)=26
=>9x-2=26 hoặc 2y+3=26
9x=28 2y=23
x=28:9 y=23:2
x xấp xỉ 3 y=11,5
`9x2 + 3y2 + 6xy - 6x + 2y - 35 = 0`
`<=> (9x2 + 6xy + y2) - 2(3x + y) + 1 + 2(y2 + 2y + 1) - 37 = 0`
`<=> (3x + y - 1)2 = 37 - 2(y + 1)^2`
Vì `(3x+y=1)^2>=0`
`=>2(y+1)^2<=37`
`=>(y+1)^2<=37/2`
Mà `(y+1)^2` là scp
`=>(y+1)^2 in {0,1,4,8,16}`
`=> y + 1 ∈{0; 1; -1; 2; -2; 3; -3; 4; -4}`
`=>y in {-1,0,-2,1,-3,2,-4,3,-5}`
Đến đây dễ rồi thay y vào rồi tìm x thôi!
\(P=\frac{1}{x^3\left(2y-x\right)}+x\left(2y-x\right)-x\left(2y-x\right)+x^2+y^2\)
\(P\ge\frac{2}{x}-2xy+2x^2+y^2\)
\(P\ge\frac{1}{x}+\frac{1}{x}+x^2+\left(x-y\right)^2\ge3+\left(x-y\right)^2\ge3\)
Dấu "=" xảy ra khi \(x=y=1\)
Lời giải:
Với $x,y$ là các số thực dương, áp dụng BĐT Cauchy ta có:
\(x^2+y^2\geq 2xy\)
\(\Rightarrow \frac{1}{x^3(2y-x)}+x^2+y^2\geq \frac{1}{x^3(2y-x)}+2xy(1)\)
$2y>x$ nên $2y-x>0$. Tiếp tục áp dụng BĐT Cauchy cho các số dương ta có:
\(\frac{1}{x^3(2y-x)}+2xy=\frac{1}{x^3(2y-x)}+x(2y-x)+x^2\geq 3\sqrt[3]{\frac{1}{x^3(2y-x)}.x(2y-x).x^2}=3(2)\)
Từ \((1);(2)\Rightarrow \frac{1}{x^3(2y-x)}+x^2+y^2\geq 3\) (đpcm)
Dấu "=" xảy ra khi $x=y=1$
Vì x=0 không thỏa mãn nên x>0 khi đó \(3^x+7\)chẵn nên y2 chẵn hay y2 chia hết cho 4 suy ra \(3^x+7\)chia hết cho 4
Vậy thì \(3^x\equiv1\left(mod4\right)\Leftrightarrow x=2k,k\in N,k\ne0\)
Khi đó ta đi giải \(3^{2k}+7=y^2\Leftrightarrow\left(y-3^k\right)\left(y+3^k\right)=7=1.7=-1.\left(-7\right)\)
\(\Rightarrow\orbr{\begin{cases}y-3^k=1,y+3^k=7\\y-3^k=-1,y+3^k=-7\left(L\right)\end{cases}\Leftrightarrow k=1,y=4}\Rightarrow x=2,y=4\)
Vậy (x;y)=(2;4)