cho Q = x2 + 6y2 - 2xy - 12x + 2y + 2020 . Cmr Q luôn nhận giá trị dương với mọi x,y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Q=x2 - 2xy + y2 - 12x + 12y + 36 + 5y2 + 10y + 5 + 1976
Q=(x - y)2 - 2.(x - y).6 + 62 + 5(y2 + 2y + 1) + 1976
Q=(x - y - 6)2 +5.(y + 1)2 + 1976 (≥ 1976 > 0 ∀ x,y ∈ R)
Vậy biểu thức Q luôn nhận giá trị dương với mọi số thực x,y
Ta có : Q = x2 - 2xy -12x +y2 +12y + 36 + 5y2 -10y + 5 + 1976
= [ x2 -2x(y + 6 ) + ( y + 6 )2 ] + 5 (y2 -2y +1 ) +1976
= ( x- y - 6 )2 + 5 (y-1)2 + 1976
Vì ( x - y - 6)2 \(\ge\)0 với mọi x ; y ;5 .(y-1)2 \(\ge\)0 với mọi x ; y và 1976 > 0
Nên biểu thức Q luôn nhận giá trị dương với mọi x ;y
Q=x2+6y2−2xy−12x+2y+2017
Q=(x2-2xy+y2)-(12x-12y)+36+(5y2-10y+5)+1976
=(x-y)2-12(x-y)+36+5(y2-2y+1)+1976
=[(x-y)2-12(x-y)+36]+5(y-1)2+1976
=(x-y-6)2+5(y-1)2+1976
do (x-y-6)2 ≥ 0 ∀ x,y
(y-1)2 ≥ 0 ∀ y
=> (x-y-6)2+5(y-1)2+1976 ≥ 1976
=> Q≥ 1976
=> MinA=1976 khi
y-1=0
=>y=1
x-y-6=0
=>x-1-6=0
=>x-7=0
=>x=7
Vậy GTNN của Q =1976 khi x=7 và y=1
\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)
\(=10x-5x^2-\left(x^2+x+9x+9\right)\)
\(=10x-5x^2-x^2-x-9x-9\)
\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)
\(=-6x^2-9\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow-6x^2\le0\forall x\)
\(\Rightarrow-6x^2-9\le-9< 0\forall x\)
hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).
\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)
\(=3x^2+x^2-4xy-12x+4xy+12x+1\)
\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)
\(=4x^2+1\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow4x^2\ge0\forall x\)
\(\Rightarrow4x^2+1\ge1>0\forall x\)
hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).
#\(Toru\)
a) Đặt \(A=x^2+4x+7\)
\(A=\left(x^2+4x+4\right)+3\)
\(A=\left(x+2\right)^2+3\)
Mà \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow A\ge3>0\)
b) Đặt \(B=4x^2-4x+5\)
\(B=\left(4x^2-4x+1\right)+4\)
\(B=\left(2x-1\right)^2+4\)
Mà \(\left(2x-1\right)^2\ge0\forall x\)
\(\Rightarrow B\ge4>0\)
c) Đặt \(C=x^2+2y^2+2xy-2y+3\)
\(C=\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)+2\)
\(C=\left(x+y\right)^2+\left(y-1\right)^2+2\)
Mà \(\left(x+y\right)^2\ge0\forall x;y\)
\(\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow C\ge2>0\)
A=x2−2xy+6y2−12x+2y+45A=x2−2xy+6y2−12x+2y+45
=(x2−2xy+y2−12x+12y+36)+(5y2−10y+5)+4=(x2−2xy+y2−12x+12y+36)+(5y2−10y+5)+4
=[(x−y)2−12(x+y)+62]+5(y2−2y+1)+4=[(x−y)2−12(x+y)+62]+5(y2−2y+1)+4
=(x−y+6)2+5(y−1)2+4=(x−y+6)2+5(y−1)2+4
Ta có: (x−y+6)2≥0∀x,y(x−y+6)2≥0∀x,y
5(y−1)2≥0∀y5(y−1)2≥0∀y
⇒(x−y+6)2+5(y−1)2+4≥4∀x,y⇒(x−y+6)2+5(y−1)2+4≥4∀x,y
Dấu "=" xảy ra ⇔x=7,y=1⇔x=7,y=1
Vậy AMIN=4⇔x=7,y=1
a: A=5x^2y-5x^2y-3xy+2xy+xy+x^4y^2+1+x^2
=x^4y^2+x^2+1
Khi x=-1 và y=1 thì A=(-1)^4*1^2+(-1)^2+1=3
b: A=x^2(x^2y^2+1)+1>=1>0 với mọi x,y
=>A luôn dương với mọi x,y
\(Q=5x^2+2y^2+4xy+2x+4y+2009\)
\(Q=\left(4x^2+4xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2+4y+4\right)+2004\)
\(Q=\left(2x+y\right)^2+\left(x+1\right)^2+\left(y+2\right)^2+2004>0\) với \(\forall x\)
\(x^2-2xy+2y^2+2y+5=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)+4=\left(x-y\right)^2+\left(y+1\right)^2+4\)
Do \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(y+1\right)^2\ge0\end{matrix}\right.\) ;\(\forall x;y\)
\(\Rightarrow\left(x-y\right)^2+\left(y+1\right)^2+4>0\) ; \(\forall x;y\)
\(Q=x^2-12x+6y^2-2xy+2y+2020\)
\(\Leftrightarrow Q=x^2-12x+36-2xy+12y-10y+6y^2+1984\)
\(\Leftrightarrow Q=\left(x-6\right)^2-2y.\left(x-6\right)+y^2+5y^2-10y+5+1979\)
\(\Leftrightarrow Q=\left(x-6-y\right)^2+5\left(y-1\right)^2+1979\)
từ đây dễ ràng suy ra Q dương với mọi x,y