Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-2xy+6y^2-12x+2y+45\)
\(A=x^2-2xy+y^2-12x+12y+36+5y^2-10y+5+4\)
\(A=\left(x-y\right)^2-2.6\left(x-y\right)+36+5\left(y^2-2y+1\right)+4\)
\(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)
Do : \(\left(x-y-6\right)^2\text{≥}0\) ∀\(xy\) ; \(5\left(y-1\right)^2\text{≥}0\text{∀}y\)
⇒ \(\left(x-y-6\right)^2+5\left(y-1\right)^2\text{ ≥}0\)
⇔ \(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\text{≥}4\)
⇒ \(A_{Min}=4."="\text{⇔}x=7;y=1\)
\(A=x^2-2xy+6y^2-12x+2y+54\)
\(A=x^2-2xy+y^2-12x+12y+36+5y^2-10y+5+4\)
\(A=\left(x-y\right)^2-2.6\left(x-y\right)+36+5\left(y^2-2y+1\right)+4\)
\(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)
Do: \(\left(x-y-6\right)^2\ge0\forall xy\); \(5\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-y-6\right)^2+5\left(y-1\right)^2\ge0\)
\(\Leftrightarrow A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)
\(\Rightarrow A_{Min}=4\)
Dấu "=" xảy ra khi \(x=7;y=1\)
\(A=x^2-2xy+6y^2-12x+2y+45\)
\(=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+4\)
\(=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)
Gía trị nhỏ nhất : \(A=4\)Khi \(\hept{\begin{cases}y-1=0\\x-y-6=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\x=7\end{cases}}\)
\(A=\left(x-y-6\right)^2+6y^2+2y+45-\left(y^2+12y+36\right)\\ \)
\(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)\(\ge4\)
Amin=4 khi y=1; x=7
\(A=\left(x-y-6\right)^2+6y^2+2y+45-\left(y^2+12y+36\right) \)
\(A=\left(x-7-6\right)^2+5\left(y-1^2\right)+4\ge4\)
\(Amin=4\)\(khi\)\(y=1;x=7\)
https://olm.vn/thanhvien/chibiverycute con lồn này bố láo òm
\(A=x^2-2xy-12x+6y^2+2y+45\)
\(=x^2-2x\left(y+6\right)+\left(y+6\right)^2-\left(y+6\right)^2+6y^2+2y+45\)
\(=\left(x-\left(y+6\right)\right)^2-y^2-12y-36+6y^2+2y+45\)
\(=\left(x-y-6\right)^2+5y^2-10y+5+4=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)
Vậy \(A_{min}=4\)khi \(y=1\)và \(x=7\)
A=x2−2xy+6y2−12x+2y+45A=x2−2xy+6y2−12x+2y+45
=(x2−2xy+y2−12x+12y+36)+(5y2−10y+5)+4=(x2−2xy+y2−12x+12y+36)+(5y2−10y+5)+4
=[(x−y)2−12(x+y)+62]+5(y2−2y+1)+4=[(x−y)2−12(x+y)+62]+5(y2−2y+1)+4
=(x−y+6)2+5(y−1)2+4=(x−y+6)2+5(y−1)2+4
Ta có: (x−y+6)2≥0∀x,y(x−y+6)2≥0∀x,y
5(y−1)2≥0∀y5(y−1)2≥0∀y
⇒(x−y+6)2+5(y−1)2+4≥4∀x,y⇒(x−y+6)2+5(y−1)2+4≥4∀x,y
Dấu "=" xảy ra ⇔x=7,y=1⇔x=7,y=1
Vậy AMIN=4⇔x=7,y=1