K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2020

ĐK: \(x\ge2000;y\ge2001;z\ge2002\)

Biến đổi pt về dạng: \(\left(\sqrt{x-2000}-1\right)^2+\left(\sqrt{y-2001}-1\right)^2+\left(\sqrt{z-2002}-1\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\sqrt{x-2000}-1=0\\\sqrt{y-2001}-1=0\\\sqrt{z-2002}-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=2001\\y=2002\left(tm\right)\\z=2003\end{cases}}}\)

9 tháng 11 2020

Sửa lại đề ( đề sai ) 

\(\sqrt{x-2000}+\sqrt{y-2001}+\sqrt{z-2002}=\frac{1}{2}\left(x+y+z\right)-3000\)

\(ĐKXĐ:\hept{\begin{cases}x\ge2000\\y\ge2001\\z\ge2002\end{cases}}\)

\(\sqrt{x-2000}+\sqrt{y-2001}+\sqrt{z-2002}=\frac{1}{2}\left(x+y+z\right)-3000\)

\(\Leftrightarrow\sqrt{x-2000}+\sqrt{y-2001}+\sqrt{z-2002}=\frac{x+y+z-6000}{2}\)

\(\Leftrightarrow2\sqrt{x-2000}+2\sqrt{y-2001}+2\sqrt{z-2002}=x+y+z-6000\)

\(\Leftrightarrow x+y+z-6000-2\sqrt{x-2000}-2\sqrt{y-2001}-2\sqrt{z-2002}=0\)

\(\Leftrightarrow\left[\left(x-2000\right)-2\sqrt{x-2000}+1\right]+\left[\left(y-2001\right)-2\sqrt{y-2001}+1\right]+\left[\left(z-2002\right)-2\sqrt{y-2002}+1\right]=0\)\(\Leftrightarrow\left(\sqrt{x-2000}-1\right)^2+\left(\sqrt{y-2001}-1\right)^2+\left(\sqrt{z-2002}-1\right)^2=0\)(1)

Vì \(\left(\sqrt{x-2000}-1\right)^2\ge0\)\(\left(\sqrt{y-2001}-1\right)^2\ge0\)\(\left(\sqrt{z-2002}-1\right)^2\ge0\)\(\forall x,y,z\)

\(\Rightarrow\left(\sqrt{x-2000}-1\right)^2+\left(\sqrt{y-2001}-1\right)^2+\left(\sqrt{z-2002}-1\right)^2\ge0\)\(\forall x,y,z\)(2)

Từ (1) và (2)

\(\Rightarrow\)Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2000}-1=0\\\sqrt{y-2001}-1=0\\\sqrt{z-2002}-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x-2000}=1\\\sqrt{y-2001}=1\\\sqrt{z-2002}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-2000=1\\y-2001=1\\z-2002=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2001\\y=2002\\z=2003\end{cases}}\)( thỏa mãn ĐKXĐ )

Vậy \(x=2001\)\(y=2002\)và \(z=2003\)

3 tháng 12 2015

nhân cả 2 vế với 2 ta có

\(2\sqrt{x-2}+2\sqrt{y+2000}+2\sqrt{z-2001}=x+y+z\)

\(\left(x-2\right)-2\sqrt{x-2}+1+\left(y+2000\right)-2\sqrt{y+2000}+1+\left(z-2001\right)-2\sqrt{z-2001}+1=0\)

\(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2000}-1\right)^2+\left(\sqrt{z-2001}-1\right)^2=0\)

cho cả 3 cái =0 thì giả ra x=3  y=-1999  z=2002

3 tháng 12 2015

how about the technology in the future Which things will happen Draw a picture about the technology in the future Note You can draw everything but they are different from now Please help me

26 tháng 8 2017

Đặt √x = t, x ≥ 0 => t ≥ 0.

Vế trái trở thành: t8 – t5 + t2 – t + 1 = f(t)

Nếu t = 0, t = 1, f(t) = 1 >0

Với 0 < t <1,      f(t) = t8 + (t2 - t5)+1 - t 

       t8 > 0, 1 - t > 0, t2 - t= t3(1 – t) > 0. Suy ra f(t) > 0.

Với t > 1 thì f(t) = t5(t3 – 1) + t(t - 1) + 1 > 0

Vậy f(t) > 0 ∀t ≥ 0. Suy ra: x4 - √x5 + x - √x + 1 > 0, ∀x ≥ 0

\(\Leftrightarrow2\sqrt{x-2000}+2\sqrt{y-2001}+2\sqrt{z-2002}=x+y+z-6000\)

\(\Leftrightarrow z+y+z-2\sqrt{x-2000}+2\sqrt{y-2001}+2\sqrt{z-2002}-6000=0\)

\(\Leftrightarrow\left(\left(\sqrt{x-2000}\right)^2-2\sqrt{x-2000}+1\right)+\left(\left(\sqrt{y-2001}\right)^2-2\sqrt{y-2001}+1\right)+\left(\left(\sqrt{z-2002}\right)^2-2\sqrt{z-2002}+1\right)=0\)\(\Leftrightarrow\left(\sqrt{x-2000}-1\right)^2+\left(\sqrt{y-2001}-1\right)^2+\left(\sqrt{z-2002}-1\right)^2=0\)

\(\Leftrightarrow x=2001;y=2002;z=2003\)

24 tháng 6 2018

hình như...

b) \(x+y+z+8=2\sqrt{x-3}+4\sqrt{y-3}+6\sqrt{z-3}\)

\(\Leftrightarrow x-3+y-3+z-3+17=2\sqrt{x-3}+4\sqrt{y-3}+6\sqrt{z-3}\)

\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-3-6\sqrt{z-3}+9\right)+3=0\)

\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-3}-3\right)^2+3=0\) (vô nghiệm, VT >/3)

Kl: ptvn

25 tháng 6 2018

c) là y - 2002 , z-2003 chứ 0 phải x đúng 0? (đoán thôi)

20 tháng 3 2019

@Akai Haruma, Nguyen, Nguyễn Thị Ngọc Thơsvtkvtm

AH
Akai Haruma
Giáo viên
20 tháng 3 2019

Bạn tham khảo tại đây:

Câu hỏi của Vũ Sơn Tùng - Toán lớp 9 | Học trực tuyến

7 tháng 1 2020

+ \(\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2=4\Rightarrow x+y+z+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=4\)

\(\Rightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\)

+ \(x+1=x+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{z}\left(\sqrt{x}+\sqrt{y}\right)\)

\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+\sqrt{z}\right)\)

+ Tương tự : \(y+1=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\); \(z+1=\left(\sqrt{x}+\sqrt{z}\right)\left(\sqrt{y}+\sqrt{z}\right)\)

+ \(P=\sqrt{\left(\sqrt{x}+\sqrt{y}\right)^2\left(\sqrt{y}+\sqrt{z}\right)^2\left(\sqrt{z}+\sqrt{x}\right)^2}\cdot\frac{\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)+\sqrt{y}\left(\sqrt{x}+\sqrt{z}\right)+\sqrt{z}\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)}\)

\(=2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=2\)

25 tháng 8 2019

\(\sqrt{x}+\sqrt{y}+\sqrt{z}=2\)

\(\Leftrightarrow x+y+z+2\sqrt{xy}+2\sqrt{yz}+2\sqrt{zx}=4\)

\(\Leftrightarrow2+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=4\)

\(\Leftrightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\)

Khi đó ta có : \(x+1=x+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow x+1=\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{z}\left(\sqrt{x}+\sqrt{y}\right)\)

\(\Leftrightarrow x+1=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\)

Tương tự : \(y+1=\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{x}+\sqrt{y}\right)\);

\(z+1=\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\)

Ta lần lượt xét các biểu thức :

+) \(\sqrt{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)

\(=\sqrt{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)}\)

\(=\sqrt{\left[\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\right]^2}\)

\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\)

+) \(\frac{\sqrt{x}}{x+1}+\frac{\sqrt{y}}{y+1}+\frac{\sqrt{z}}{z+1}\)

\(=\frac{\sqrt{x}}{\left(\sqrt{y}+\sqrt{x}\right)\left(\sqrt{x}+\sqrt{z}\right)}+\frac{\sqrt{y}}{\left(\sqrt{y}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)}+\frac{\sqrt{z}}{\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)+\sqrt{y}\left(\sqrt{x}+\sqrt{z}\right)+\sqrt{z}\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)}\)

\(=\frac{2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}{\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(=\frac{2}{\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

Do đó ta có :

\(P=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\cdot\frac{2}{\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(P=2\)

Vậy...