K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2021

tách nhỏ câu hỏi ra

10 tháng 10 2021

1. -3(-x+3)

= 3x - 6

2. -5x3 (-3x + 5)

= 15x4 - 25x3

3. -2x (-2x - 6)

= 4x2 + 12x

 

Ta có: \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=\left(x+2\right)-\left(x-5\right)\)

\(\Leftrightarrow6x^2+21x-2x-7-6x^2+5x-6x+5=x+2-x+5\)

\(\Leftrightarrow18x-2=7\)

\(\Leftrightarrow18x=9\)

hay \(x=\dfrac{1}{2}\)

18 tháng 8 2021

ủa 2 chứ bạn mình

 

30 tháng 3 2020

1/x-1+2/x-2+3/x-3=6/x-6

25 tháng 7 2018

Bài 2:

\(\left(5x+1\right)^2-\left(2xy-3\right)^2\)

\(=25x^2+10x+1-\left(2xy-3\right)^2\)

\(=25x^2+10x+1\left(4x^2y^2-12xy+9\right)\)

\(=25x^2+10x+1-4x^2y^2+12xy-9\)

\(=25x^2-4x^2y^2+10x+12xy-8\)

Bài 2: 

\(\left(x-1\right)\left(x^2+x+1\right)=x^2\left(x-9\right)+2x+6\)

\(=x^3-1=x^3-9x^2+2x+6\)

\(=x^3-9x^2+2x+6=x^3-1\)

\(=x^3-9x^2+2x+6+1=x^3-1+1\)

\(=x^3-9x^2+2x+7=x^3\)

\(=x^3-9x^2+2x+7-x^3=x^3-x^3\)

\(=-9x^2+2x+7=0\)

\(\Rightarrow x=-\frac{7}{9};x=1\)

26 tháng 12 2021

a: \(\left(x,y\right)\in\left\{\left(1;-1\right);\left(-1;1\right)\right\}\)

12 tháng 6 2019

Ta có:

\(A=3.1.\sqrt{2x-1}+x\sqrt{5-4x^2}\)

Áp dụng bất đẳng thức Cô-si cho các cặp số \(1,\sqrt{2x-1}\)và \(x,\sqrt{5-4x^2}\)không âm, ta có:

\(A=3.1.\sqrt{2x-1}+x\sqrt{5-4x^2}\le3.\frac{1+2x-1}{2}+\frac{x^2+5-4x^2}{2}=\frac{-3x^2+6x+5}{2}\)

\(=-\frac{3}{2}.\left(x^2-2x-\frac{5}{3}\right)=-\frac{3}{2}\left(x^2-2x+1\right)+4=-\frac{3}{2}\left(x-1\right)^2+4\le4\)

" =" xảy ra <=> \(\hept{\begin{cases}1=\sqrt{2x-1}\\x=\sqrt{5-4x^2}\\\left(x-1\right)^2=0\end{cases}}\Leftrightarrow x=1\)thỏa mãn

Vậy maxA=4 khi và chỉ khi x=1

13 tháng 8 2016

a)

A(x)=x2+x+1

A(x)=x2+x+1/4-1/4+1

A(x)=(x+1/2)2+3/4

(x+1/2)2 ≥0

=> (x+1/2)2+3/4≥3/4

=> A(x)≥3/4

dấu "=" xảy ra khi (x+1/2)2=0

ta có:

A(x)=(x+1/2)2+3/4=3/4

=> (x+1/2)2=0

=> x=-1/2

vậy Min của A(x) là 3/4tại x=-1/2

b) B(x)=2x2+3x+5

=>B(x)= 2(x2+3/2x+5/2)

=> B(x)=2(x2+3/2x+9/16-9/16+5/2)

=> B(x)=2[ (x+3/4)2+31/16]

ta có:(x+3/4)2≥0

=>(x+3/4)2+31/16≥31/16

=>2[(x+3/4)2+31/16]≥31/8

=> B(x)≥31/8

dấu "=" xảy ra khi (x+3/4)2=0

với x+3/4=0

=>x=-3/4

vậy min của B(x) là 31/8 tại x=-3/4