Cho hình chóp SAbc có tam giác Abc đều cạnh 2a ,có Sa vuông góc với đáy ,Sa =a căn 3 .M và N lần lượt là trung điểm của Sb, SC. Tính VSAmn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Xét tam giác SAC vuông tại A có AP là đường cao, ta có:
1.
\(\dfrac{V_{SAMC}}{V_{SABC}}=\dfrac{SM}{SB}\)
Theo hệ thức lượng: \(SA^2=SM.SB\Rightarrow SM=\dfrac{SA^2}{SB}\)
\(\Rightarrow\dfrac{SM}{SB}=\left(\dfrac{SA}{SB}\right)^2\)
\(\Rightarrow V_{SAMC}=\left(\dfrac{SA}{SB}\right)^2.V\)
2.
Ta có: \(\dfrac{V_{SAMN}}{V_{SABC}}=\dfrac{SN}{SC}.\dfrac{SM}{SB}\)
Theo c/m câu a ta có \(\dfrac{SM}{SB}=\left(\dfrac{SA}{SB}\right)^2\)
Tương tự áp dụng hệ thức lượng cho tam giác vuông SAC:
\(SA^2=SN.SC\Rightarrow SN=\dfrac{SA^2}{SC}\Rightarrow\dfrac{SN}{SC}=\left(\dfrac{SA}{SC}\right)^2\)
\(\Rightarrow V_{SAMN}=\left(\dfrac{SA}{SB}\right)^2.\left(\dfrac{SA}{SC}\right)^2.V\)
Phương pháp:
Tính thể tích V S . A B C
Tính thể tích V S . A M N theo công thức tỉ lệ thể tích
Tính thể tích V A . B C M N và suy ra kết luận
Cách giải:
Xét tam giác SAB và SAC là các tam giác vuông tại A có hai cạnh góc vuông là a và 2a nên
Tam giác SAB vuông tại có đường cao AM
Khi đó
Tương tự
Lại có
Mặt khác
Do đó
Chọn C.