2016 | x-2|+2018/| x -2|+1 help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\dfrac{x}{2014}+\dfrac{x+1}{2015}+\dfrac{x+2}{2016}+\dfrac{x+3}{2017}+\dfrac{x+4}{2018}=5\)
\(\Leftrightarrow\left(\dfrac{x}{2014}-1\right)+\left(\dfrac{x+1}{2015}-1\right)+\left(\dfrac{x+2}{2016}-1\right)+\left(\dfrac{x+3}{2017}-1\right)+\left(\dfrac{x+4}{2018}-1\right)=0\)\(\Leftrightarrow\dfrac{x-2014}{2014}+\dfrac{x-2014}{2015}+\dfrac{x-2014}{2016}+\dfrac{x-2014}{2017}+\dfrac{x-2014}{2018}=0\)\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}\right)=0\) (1)
Mà \(\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}>0\) (2)
Từ (1) và (2) => \(x-2014=0\) \(\Leftrightarrow x=2014\)
đặt x-2016=a
y-2017=b
z-2018=c
ta có\(\frac{1}{\sqrt{a}}-\frac{1}{a}+\frac{1}{\sqrt{b}}-\frac{1}{b}+\frac{1}{\sqrt{c}}-\frac{1}{c}=\frac{3}{4}\)
=>\(\left(\frac{1}{\sqrt{a}}-\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{b}}-\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{c}}-\frac{1}{2}\right)^2=0\)
=>\(a=b=c=4\)
còn lại tự lm nốt
(2^2016+2^2017+2^2018):(2^2014+2^2015+2^2016)=2^2016(1+2+2^2):2^2014:(1+2+2^2)=2^2016:2^2014=2^2=4
\(\frac{2^{2016}+2^{2017}+2^{2018}}{2^{2014}+2^{2015}+2^{2016}}=\frac{2^{2016}\left(1+2+2^2\right)}{2^{2014}\left(1+2+2^2\right)}=\frac{2^{2016}}{2^{2014}}=2^2=4\)
1) (x + 2016)2016 + |y - 2017|2017 = 0
\(\Leftrightarrow\hept{\begin{cases}\left(x+2016\right)^{2016}=0\\\left|y-2017\right|^{2017}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2016=0\\y-2017=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2016\\y=2017\end{cases}}\)
Ta có :
\(\dfrac{2016}{2017}>\dfrac{2016}{2018}\Rightarrow A>\dfrac{2016}{2018}+\dfrac{2017}{2018}\)\(\Rightarrow A>\dfrac{2016+2017}{2018}\)
\(B=\dfrac{2016+2017}{2017+2018}=\dfrac{2016+2017}{4035}\)
Vì \(\dfrac{2016+2017}{2018}>\dfrac{2016+2017}{4035}\)
\(\Rightarrow A>B\)
~ Chúc bn học tốt ~
B=\(\dfrac{2016+2017}{2017+2018}\)=\(\dfrac{2016}{2017+2018}+\dfrac{2017}{2017+2018}\)
Ta có:
\(\dfrac{2016}{2017+2018}< \dfrac{2016}{2017}\)\(^{\left(1\right)}\)
\(\dfrac{2017}{2017+2018}< \dfrac{2017}{2018}\)\(^{\left(2\right)}\)
Cộng vế với vế của biểu thức (1), (2) suy ra:
\(\dfrac{2016}{2017+2018}+\dfrac{2017}{2017+2018}< \dfrac{2016}{2017}+\dfrac{2017}{2018}\)
Hay A<B
Ta có :
\(\frac{1}{2018x}=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2017}\right)\left(1-\frac{1}{2018}\right)\)
\(\Rightarrow\frac{1}{2018x}=\left(\frac{2}{2}-\frac{1}{2}\right)\left(\frac{3}{3}-\frac{1}{3}\right)\left(\frac{4}{4}-\frac{1}{4}\right)...\left(\frac{2017}{2017}-\frac{1}{2017}\right)\left(\frac{2018}{2018}-\frac{1}{2018}\right)\)
\(\Rightarrow\frac{1}{2018x}=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2016}{2017}.\frac{2017}{2018}\)
\(\Rightarrow\frac{1}{2018x}=\frac{1}{2018}\)
\(\Rightarrow2018x=2018\)
\(\Rightarrow x=2018:2018\)
\(\Rightarrow x=1\)
Vậy \(x=1\)
Chúc bạn học tốt !!!
1/2018 * x = ( 1 - 1/2 ) * ( 1 - 1/3 ) * ( 1 - 1/4 ) * ... ( 1 - 1/2018 )
1/2018 * x = 1/2 * 2/3 * 3/4 * ... * 2017/2018
1/2018 * x = 1/2018
x = 1/2018 : 1/2018
x = 1