
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1) (x + 2016)2016 + |y - 2017|2017 = 0
\(\Leftrightarrow\hept{\begin{cases}\left(x+2016\right)^{2016}=0\\\left|y-2017\right|^{2017}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2016=0\\y-2017=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2016\\y=2017\end{cases}}\)

x2 + 2x = 0
=> x(x + 2) = 0
=> \(\orbr{\begin{cases}x=0\\x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
(x - 2) + 3.x2 - 6x = 0
=> (x - 2) + 3x2 - 3x . 2 = 0
=> (x - 2) + 3x.(x - 2) = 0
=> (1 + 3x)(x - 2) = 0
=> \(\orbr{\begin{cases}1+3x=0\\x-2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{3}\\x=2\end{cases}}\)

Ta có: \(N\left(x\right)=x^{2017}-2018x^{2016}+2018x^{2015}-...-2018x^2+2018x-1\)
\(=x^{2017}-2018\left(x^{2016}-x^{2015}+...+x^2-x\right)-1\)
\(\Rightarrow N\left(2017\right)=2017^{2017}-2018\left(2017^{2016}-2017^{2015}+...+2017^2-2017\right)-1\)
Đặt \(A=2017^{2016}-2017^{2015}+...+2017^2-2017\)
\(\Rightarrow2017A=2017^{2017}-2017^{2016}+...+2017^3-2017^2\)
\(\Rightarrow2018A=2017^{2017}-2017\)
\(\Rightarrow A=\dfrac{2017^{2017}-2017}{2018}\)
\(\Rightarrow N\left(2017\right)=2017^{2017}-2018.\dfrac{2017^{2017}-2017}{2018}-1\)
\(=2017^{2017}-\left(2017^{2017}-2017\right)-1\)
\(=2017^{2017}-2017^{2017}+2017-1\)
\(=2016\)
Vậy N(2017) = 2016

b) \(\left|x-2018y\right|+\left(y-1\right)^{2018}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x-2018y\right|=0\\\left(y-1\right)^{2018}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-2018y=0\\y-1=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-2018y=0\\y=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-2018.1=0\\y=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-2018=0\\y=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2018\\y=1\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=2018\\y=1\end{matrix}\right.\)
c) \(\left|x+5\right|+\left(3y-4\right)^{2018}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x+5\right|=0\\\left(3y-4\right)^{2018}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+5=0\\3y-4=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-5\\3y=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-5\\y=\dfrac{4}{3}\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=-5\\y=\dfrac{4}{3}\end{matrix}\right.\)

\(\frac{x-4}{2021}+\frac{x-3}{2020}=\frac{x-2}{2019}+\frac{x-1}{2018}\)
\(\Leftrightarrow\left(\frac{x-4}{2021}+1\right)+\left(\frac{x-3}{2020}+1\right)=\left(\frac{x-2}{2019}+1\right)+\left(\frac{x-1}{2018}+1\right)\)
\(\Leftrightarrow\frac{x+2017}{2021}+\frac{x+2017}{2020}=\frac{x+2017}{2019}+\frac{x+2017}{2018}\)
\(\Leftrightarrow\frac{x+2017}{2021}+\frac{x+2017}{2020}-\frac{x+2017}{2019}-\frac{x+2017}{2018}=0\)
\(\Leftrightarrow\left(x+2017\right)\left(\frac{1}{2021}+\frac{1}{2020}-\frac{1}{2019}-\frac{1}{2018}\right)=0\)
Mà \(\left(\frac{1}{2021}+\frac{1}{2020}-\frac{1}{2019}-\frac{1}{2018}\right)\ne0\)
\(\Leftrightarrow x+2017=0\)
\(\Leftrightarrow x=-2017\)
Vậy ..
=> (x-4/2021 +1) + (x-3/2020 +1) = (x-2/2019 +1)+ (x-1/2018 +1)
=> x+2017/2021 + x+2017/2020 = x+2017/2019 + x+2017/2018
=> x+2017/2018 + x+2017/2018 - x+2017/2020 - x+2017/2021 = 0
=> (x+2017).(1/2018+1/2019+1/2020+1/2021) = 0
=> x+2017 = 0 ( vì 1/2018+1/2019+1/2020+1/2021 > 0 )
=> x=-2017
Vậy x=-2017
k mk nha

a) câu a sai đề em nhé, tử số phải là 6/ 13
tử số em đặt 3 ra ngoài, mẫu số em đặt 11 ra ngoài bên trong ngoặc là hai biểu thức giống nhau, đáp số 3/11
b) 17^18 = (17^3)^6 =4913^6
63^12 =(63^2)^6 =3969^6. giờ thì dễ rồi
c) Vì ( x - √3 )^ 2016 >= 0; ( y ^2 -3 ) ^ 2018> =0 nên ( x - √3 )^ 2016 + ( y ^2 -3 ) ^ 2018 = 0 khi ( x - √3 )^ 2016 =0 và
( y ^2 -3 ) ^ 2018 = 0, suy ra x = căn 3; y^2 =3 => x =căn 3; y = căn 3 hoặc y = - căn 3

\(\dfrac{x-1}{2019}+\dfrac{x-2}{2018}=\dfrac{x-3}{2017}+\dfrac{x-4}{2016}\)
\(\Leftrightarrow\left(\dfrac{x-1}{2019}-1\right)+\left(\dfrac{x-2}{2018}-1\right)=\left(\dfrac{x-3}{2017}-1\right)+\left(\dfrac{x-4}{2016}-1\right)\)
\(\Leftrightarrow\dfrac{x-2020}{2019}+\dfrac{x-2020}{2018}=\dfrac{x-2020}{2017}+\dfrac{x-2020}{2016}\)
\(\Leftrightarrow\dfrac{x-2020}{2019}+\dfrac{x-2020}{2018}-\dfrac{x-2020}{2017}-\dfrac{x-2020}{2016}\)
\(\Leftrightarrow\left(x-2020\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2016}\right)=0\)
Mà \(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2016}\ne0\)
\(\Leftrightarrow x-2020=0\)
\(\Leftrightarrow x=2020\)