K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2019

2

a

\(x+y+z=0\)

\(\Rightarrow x+y=-z\)

\(\Rightarrow\left(x+y\right)^3=\left(-z\right)^3\)

\(\Rightarrow x^3+y^3+3x^2y+3xy^2=-z^3\)

\(\Rightarrow x^3+y^3+z^3=3xy\left(x+y\right)=3xyz\)

b

Đặt \(a-b=x;b-c=y;c-a=z\Rightarrow x+y+z=0\)

Ta có bài toán mới:Cho \(x+y+z=0\).Phân tích đa thức thành nhân tử:\(x^3+y^3+z^3\)

Áp dụng kết quả câu a ta được:

\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

1 tháng 2 2017

\(A=\frac{a}{ab+a+2}+\frac{b}{bc+b+1}+\frac{2c}{ac+2c+2}\)

\(=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{abc^2}{ac+abc^2+abc}\)

\(=\frac{a}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{abc^2}{ac\left(bc+b+1\right)}\)

\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)

\(=\frac{bc+b+1}{bc+b+1}=1\)

2 tháng 5 2017

Câu 3/ \(\sqrt{\left(x+z\right)^2+\left(y-t\right)^2}+\sqrt{\left(x-z\right)^2+\left(y+t\right)^2}\)

\(\le\sqrt{1+2xz-2yt}+\sqrt{1-2xz+2yt}\)

\(\le\dfrac{1+1+2xz-2yt}{2}+\dfrac{1+1-2xz+2yt}{2}=1+1=2\)

2 tháng 5 2017

Đăng nhiều thế???

5 tháng 12 2018

giải tạm 1 bài z -,-

2) Cauchy-Schwarz dạng Engel :

\(A=\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}=\dfrac{6}{2}=3\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=2\)

Chúc bạn học tốt ~

8 tháng 9 2019

4/ Ta có: \(6=a+b+c+ab+bc+ca\ge3\left(\sqrt[3]{\left(abc\right)^2}+\sqrt[3]{abc}\right)\)

Đặt \(\sqrt[3]{abc}=t\Rightarrow t^2+t\le2\Rightarrow t\le1\Rightarrow t^3=C=abc\le1\)

Vậy...

5/ \(D\le\left(\frac{a+b+c}{3}\right)^3.\left[\frac{2\left(a+b+c\right)}{3}\right]^3=\frac{512}{729}\)

Vậy ...

P/s: Em không chắc

ui mk bó tay vì chưa hok đến lóp 9!!! ^^

54746767765858578758788974686865876546456475675685785