Cmr : 2x^2 - 10x + 14 > 0 với mọi x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M.N ui, Trang này hiện nay đang bị lỗi rồi T-T, điển hình như các lỗi sau :
- Vào bạn bè thì không thấy ai đang onl cả nhưng sự thật là rất nhiều người online
- Phần thông báo mặc dù đã xem rồi nhưng thông báo vẫn hiện
- Vào trang cá nhân thì chỉ có hình bông hoa
Mong Admin mau sửa lỗi để cho A.E hài lòng, ngoài ra cũng không làm mất uy tín của Trang
a) \(x^2-x+1\)
\(=\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
b) \(x^2+2x+2\)
\(=\left(x^2+2x+1\right)+1\)
\(=\left(x+1\right)^2+1>0\forall x\)
c) \(-x^2+4x-5\)
\(=-x^2+4x-4-1\)
\(=-\left(x^2-4x+4\right)-1\)
\(=-\left(x-2\right)^2-1< 0\forall x\)
1)
a) \(3x^3y^2-6x^2y^3+9x^2y^2\)
\(=3x^2y^2\left(x-2y+3\right)\)
b) \(5x^2y^3-25x^3y^4+10x^3y^3\)
\(=5x^2y^3\left(1-5xy+2x\right)\)
Ta có:\(-x^2+4x-7\)
\(=-\left(x^2-4x+7\right)\)
\(=-\left(x^2-2.x.2+2^2-4+7\right)\)
\(=-\left[\left(x-2\right)^2+3\right]\)
\(=-\left(x-2\right)^2-3\)
Do \(-\left(x-2\right)^2\le0\) với \(\forall x\)
\(\Rightarrow-\left(x-2\right)^2-3\le-3< 0\)
\(\Rightarrow-x^2+4x-7< 0\) (đpcm)
câu b,c đề sai bạn nhé!
\(x^2-10x+30=x^2-10x+25+5=\left(x-5\right)^2+5>0\left(đpcm\right)\)
Ta có ;
\(2x^2-10x+27\)
\(=x^2-2x+1+x^2-8x+16+10\)
\(=\left(x-1\right)^2+\left(x-4\right)^2+10\)
Vì \(\left(x-1\right)^2\ge0\forall x\)và \(\left(x-4\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+\left(x-4\right)^2+10\ge10\forall x\)
=> Biểu thức đã cho luôn dương .
( P.s : Bạn có thể tách theo kiểu khác ).
\(2x^2-10x+27\)
\(=x^2+x^2-4x-6x+4+9+14\)
\(=\left(x^2-4x+4\right)+\left(x^2-6x+9\right)+14\)
\(=\left(x-2\right)^2+\left(x-3\right)^2+14\)
Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\\\left(x-3\right)^2\ge0\forall x\end{cases}}\)
\(\Rightarrow\left(x-2\right)^2+\left(x-3\right)^2+14\ge14\forall x\)
=> Biểu thức luôn dương vớ mọi x .
Ta có: \(2x^2-10x+14\)
\(=2\left(x^2-5x+\frac{25}{4}\right)+\frac{3}{2}\)
\(=2\left(x-\frac{5}{2}\right)^2+\frac{3}{2}\ge\frac{3}{2}>0\left(\forall x\right)\)
\(\Rightarrow2x^2-10x+14>0\)