K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2020

Ta có: \(2x^2-10x+14\)

\(=2\left(x^2-5x+\frac{25}{4}\right)+\frac{3}{2}\)

\(=2\left(x-\frac{5}{2}\right)^2+\frac{3}{2}\ge\frac{3}{2}>0\left(\forall x\right)\)

\(\Rightarrow2x^2-10x+14>0\)

22 tháng 10 2018

M.N ui, Trang này hiện nay đang bị lỗi rồi T-T, điển hình như các lỗi sau : 

- Vào bạn bè thì không thấy ai đang onl cả nhưng sự thật là rất nhiều người online 

- Phần thông báo mặc dù đã xem rồi nhưng thông báo vẫn hiện 

- Vào trang cá nhân thì chỉ có hình bông hoa 

Mong Admin mau sửa lỗi để cho A.E hài lòng, ngoài ra cũng không làm mất uy tín của Trang

4 tháng 12 2017

a) \(x^2-x+1\)

\(=\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

b) \(x^2+2x+2\)

\(=\left(x^2+2x+1\right)+1\)

\(=\left(x+1\right)^2+1>0\forall x\)

c) \(-x^2+4x-5\)

\(=-x^2+4x-4-1\)

\(=-\left(x^2-4x+4\right)-1\)

\(=-\left(x-2\right)^2-1< 0\forall x\)

4 tháng 12 2017

1)

a) \(3x^3y^2-6x^2y^3+9x^2y^2\)

\(=3x^2y^2\left(x-2y+3\right)\)

b) \(5x^2y^3-25x^3y^4+10x^3y^3\)

\(=5x^2y^3\left(1-5xy+2x\right)\)

21 tháng 8 2018

Ta có:\(-x^2+4x-7\)

\(=-\left(x^2-4x+7\right)\)

\(=-\left(x^2-2.x.2+2^2-4+7\right)\)

\(=-\left[\left(x-2\right)^2+3\right]\)

\(=-\left(x-2\right)^2-3\)

Do \(-\left(x-2\right)^2\le0\) với \(\forall x\)

\(\Rightarrow-\left(x-2\right)^2-3\le-3< 0\)

\(\Rightarrow-x^2+4x-7< 0\) (đpcm)

câu b,c đề sai bạn nhé!

16 tháng 10 2017

\(x^2-10x+30=x^2-10x+25+5=\left(x-5\right)^2+5>0\left(đpcm\right)\)

20 tháng 8 2018

Ta có ;

\(2x^2-10x+27\)

\(=x^2-2x+1+x^2-8x+16+10\)

\(=\left(x-1\right)^2+\left(x-4\right)^2+10\)

Vì \(\left(x-1\right)^2\ge0\forall x\)và \(\left(x-4\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2+\left(x-4\right)^2+10\ge10\forall x\)

=> Biểu thức đã cho luôn dương .

( P.s : Bạn có thể tách theo kiểu khác ).

20 tháng 8 2018

\(2x^2-10x+27\)

\(=x^2+x^2-4x-6x+4+9+14\)

\(=\left(x^2-4x+4\right)+\left(x^2-6x+9\right)+14\)

\(=\left(x-2\right)^2+\left(x-3\right)^2+14\)

Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\\\left(x-3\right)^2\ge0\forall x\end{cases}}\)

\(\Rightarrow\left(x-2\right)^2+\left(x-3\right)^2+14\ge14\forall x\)

=> Biểu thức luôn dương vớ mọi x .

Haha

Chào anh Thánh Gióng hehe