K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2020

Ta có: 

\(A=-\left|2,16-2x\right|-5,9\le-5,9\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(-\left|2,16-2x\right|=0\)

\(\Leftrightarrow2,16=2x\Rightarrow x=1,08\)

Vậy Max(A) = -5,9 khi x = 1,08

13 tháng 12 2021

a: \(\Leftrightarrow2< x< =5\)

hay \(x\in\left\{3;4;5\right\}\)

18 tháng 12 2015

 

a) x2 =81

 => x = 9 hoặc x =-9

b) 2x =80 + 150

 2x =230

x =115

18 tháng 12 2015

A, x= 9

B, 80+182-2.16=132:2=66= x

bạn tính lại 80+182-2.16 rồi :2 giúp mình. Tại mình chỉ nhẩm thôi!

NV
22 tháng 4 2021

\(Q=-2\left(x-\dfrac{3}{2}\right)^2+\dfrac{25}{2}\le\dfrac{25}{2}\)

\(Q_{max}=\dfrac{25}{2}\) khi \(x=\dfrac{3}{2}\)

\(A=\dfrac{9\left(x^2+2\right)-9x^2+6x-1}{x^2+2}=9-\dfrac{\left(3x-1\right)^2}{x^2+2}\le9\)

\(A_{max}=9\) khi \(x=\dfrac{1}{3}\)

\(A=\dfrac{12x+34}{2\left(x^2+2\right)}=\dfrac{-\left(x^2+2\right)+x^2+12x+36}{2\left(x^2+2\right)}=-\dfrac{1}{2}+\dfrac{\left(x+6\right)^2}{2\left(x^2+2\right)}\le-\dfrac{1}{2}\)

\(A_{min}=-\dfrac{1}{2}\) khi \(x=-6\)

25 tháng 10 2023

A) \(A=-3x^2+x+1\)

\(A=-3\left(x^2-\dfrac{1}{3}x-\dfrac{1}{3}\right)\)

\(A=-3\left(x^2-2\cdot\dfrac{1}{6}\cdot x+\dfrac{1}{36}-\dfrac{13}{36}\right)\)

\(A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\)

Mà: \(-3\left(x-\dfrac{1}{6}\right)^2\le0\forall x\)

\(\Rightarrow A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\le\dfrac{13}{12}\forall x\)

Dấu "=" xảy ra khi:

\(x-\dfrac{1}{6}=0\Rightarrow x=\dfrac{1}{6}\)

Vậy: \(A_{max}=\dfrac{13}{12}.khi.x=\dfrac{1}{6}\)

B) \(B=2x^2-8x+1\)

\(B=2\left(x^2-4x+\dfrac{1}{2}\right)\)

\(B=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)

\(B=2\left(x-2\right)^2-7\)

Mà: \(2\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow B=2\left(x-2\right)^2-7\ge-7\forall x\)

Dấu "=" xảy ra khi:

\(x-2=0\Rightarrow x=2\)

Vậy: \(B_{min}=2.khi.x=2\)

25 tháng 10 2023

câu a) bạn viết sai đề rồi

 

21 tháng 3 2017

TA CÓ : 32-2X/11-X

=10+22-2X/11-X

=10+2(11-X)/11-X

=10/11-X  +   2(11-X)/11-X

=10/11-X    +2

ĐỂ Amin =>10/11-X   +   2    BÉ NHẤT

=> 10/11-X  BÉ NHẤT

=> 11-X  LỚN NHẤT  . MÀ X thuôc Z

=>11-x=11  =>  X=0

=> Amin=32-2x0/11-0  =32/11

 VÂY Amin=32/11  <=>  X=0

21 tháng 3 2017

\(A=\frac{32-2x}{11-x}=\frac{10}{11-x}+\frac{22-2x}{11-x}=\frac{10}{11-x}+\frac{2\left(11-x\right)}{11-x}=\frac{10}{11-x}+2\)

A đạt giá trị lớn nhất => \(\frac{10}{11-x}\) lớn nhất => 11-x lớn nhỏ nhất > 0

mà x thuộc Z => 11-x=1 => x=10

Vậy \(A_{max}=\frac{10}{11-10}+2=12\) khi x=10

NV
5 tháng 11 2021

\(A=\left(2x+1\right)^2-\left(3x+2\right)^2+2x+11\)

\(=4x^2+4x+1-\left(9x^2+12x+4\right)+2x+11\)

\(=-5x^2-6x+8\)

\(=-5\left(x+\dfrac{3}{5}\right)^2+\dfrac{49}{5}\le\dfrac{49}{5}\)

\(A_{max}=\dfrac{49}{5}\) khi \(x=-\dfrac{3}{5}\)

26 tháng 7 2015

Áp dụng bất đẳng thức giá trị tuyệt đối sau: |a| - |b| \(\le\) |a + b|. Dấu "=" khi a.b \(\le\) 0

Ta có: A = |2x + 7| - |2x - 3| = |2x + 7|- |3 - 2x| \(\le\) |2x + 7 + 3 - 2x| = 10

Dấu "=" khi (2x+7). (3 - 2x) \(\le\) 0 => (2x +7).(2x - 3) \(\ge\) 0 

mà 2x + 7 > 2x - 3 => 2x + 7 \(\le\) 0 hoặc 2x - 3 \(\ge\) 0 => x \(\le\) -7/2 hoặc x   \(\ge\) 3/2

Vậy A lớn nhất = 10 khi  x \(\le\) -7/2 hoặc x   \(\ge\) 3/2

26 tháng 7 2015

Bạn Nguyễn Thị Bích Phương làm sai rồi.

18 tháng 8 2018

\(A=2x^2+y^2-2xy-2x+y-12\)

\(A=\left(x^2-2xy+y^2\right)+x^2-2x+y-12\)

\(A=\left[\left(x-y\right)^2-2\left(x-y\right).\frac{1}{2}+\frac{1}{4}\right]+\left(x^2-x+\frac{1}{4}\right)-\frac{25}{2}\)

\(A=\left(x-y-\frac{1}{2}\right)^2+\left(x-\frac{1}{2}\right)^2-\frac{25}{2}\)

Do \(\left(x-y-\frac{1}{2}\right)^2\ge0\forall x;y\)

     \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow A\ge-\frac{25}{2}\)

Dấu "=" xảy ra khi :  \(\hept{\begin{cases}x-y-\frac{1}{2}=0\\x-\frac{1}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=0\end{cases}}\)

Vậy  \(A_{Min}=-\frac{25}{2}\Leftrightarrow\left(x;y\right)=\left(\frac{1}{2};0\right)\)

18 tháng 8 2018

\(A=-2x^2-y^2-2xy-2x+y-12\)

\(-A=2x^2+y^2+2xy+2x-y+12\)

\(-A=\left(x^2+2xy+y^2\right)+x^2+2x-y+12\)

\(-A=\left[\left(x+y\right)^2-2\left(x+y\right).\frac{1}{2}+\frac{1}{4}\right]+\left(x^2+3x+\frac{9}{4}\right)+\frac{19}{2}\)

\(-A=\left(x+y-\frac{1}{2}\right)^2+\left(x+\frac{3}{2}\right)^2+\frac{19}{2}\)

Do  \(\left(x+y-\frac{1}{2}\right)^2\ge0\forall x;y\)

      \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow-A\ge\frac{19}{2}\Leftrightarrow A\le-\frac{19}{2}\)

Dấu "=" xảy ra khi :  \(\hept{\begin{cases}x+y-\frac{1}{2}=0\\x+\frac{3}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=2\end{cases}}\)

Vậy \(A_{Max}=-\frac{19}{2}\Leftrightarrow\left(x;y\right)=\left(-\frac{3}{2};2\right)\)