Tìm GTLN của A = -|2.16-2x|-5.9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow2< x< =5\)
hay \(x\in\left\{3;4;5\right\}\)
a) x2 =81
=> x = 9 hoặc x =-9
b) 2x =80 + 150
2x =230
x =115
A, x= 9
B, 80+182-2.16=132:2=66= x
bạn tính lại 80+182-2.16 rồi :2 giúp mình. Tại mình chỉ nhẩm thôi!
\(Q=-2\left(x-\dfrac{3}{2}\right)^2+\dfrac{25}{2}\le\dfrac{25}{2}\)
\(Q_{max}=\dfrac{25}{2}\) khi \(x=\dfrac{3}{2}\)
\(A=\dfrac{9\left(x^2+2\right)-9x^2+6x-1}{x^2+2}=9-\dfrac{\left(3x-1\right)^2}{x^2+2}\le9\)
\(A_{max}=9\) khi \(x=\dfrac{1}{3}\)
\(A=\dfrac{12x+34}{2\left(x^2+2\right)}=\dfrac{-\left(x^2+2\right)+x^2+12x+36}{2\left(x^2+2\right)}=-\dfrac{1}{2}+\dfrac{\left(x+6\right)^2}{2\left(x^2+2\right)}\le-\dfrac{1}{2}\)
\(A_{min}=-\dfrac{1}{2}\) khi \(x=-6\)
A) \(A=-3x^2+x+1\)
\(A=-3\left(x^2-\dfrac{1}{3}x-\dfrac{1}{3}\right)\)
\(A=-3\left(x^2-2\cdot\dfrac{1}{6}\cdot x+\dfrac{1}{36}-\dfrac{13}{36}\right)\)
\(A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\)
Mà: \(-3\left(x-\dfrac{1}{6}\right)^2\le0\forall x\)
\(\Rightarrow A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\le\dfrac{13}{12}\forall x\)
Dấu "=" xảy ra khi:
\(x-\dfrac{1}{6}=0\Rightarrow x=\dfrac{1}{6}\)
Vậy: \(A_{max}=\dfrac{13}{12}.khi.x=\dfrac{1}{6}\)
B) \(B=2x^2-8x+1\)
\(B=2\left(x^2-4x+\dfrac{1}{2}\right)\)
\(B=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)
\(B=2\left(x-2\right)^2-7\)
Mà: \(2\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow B=2\left(x-2\right)^2-7\ge-7\forall x\)
Dấu "=" xảy ra khi:
\(x-2=0\Rightarrow x=2\)
Vậy: \(B_{min}=2.khi.x=2\)
TA CÓ : 32-2X/11-X
=10+22-2X/11-X
=10+2(11-X)/11-X
=10/11-X + 2(11-X)/11-X
=10/11-X +2
ĐỂ Amin =>10/11-X + 2 BÉ NHẤT
=> 10/11-X BÉ NHẤT
=> 11-X LỚN NHẤT . MÀ X thuôc Z
=>11-x=11 => X=0
=> Amin=32-2x0/11-0 =32/11
VÂY Amin=32/11 <=> X=0
\(A=\frac{32-2x}{11-x}=\frac{10}{11-x}+\frac{22-2x}{11-x}=\frac{10}{11-x}+\frac{2\left(11-x\right)}{11-x}=\frac{10}{11-x}+2\)
A đạt giá trị lớn nhất => \(\frac{10}{11-x}\) lớn nhất => 11-x lớn nhỏ nhất > 0
mà x thuộc Z => 11-x=1 => x=10
Vậy \(A_{max}=\frac{10}{11-10}+2=12\) khi x=10
\(A=\left(2x+1\right)^2-\left(3x+2\right)^2+2x+11\)
\(=4x^2+4x+1-\left(9x^2+12x+4\right)+2x+11\)
\(=-5x^2-6x+8\)
\(=-5\left(x+\dfrac{3}{5}\right)^2+\dfrac{49}{5}\le\dfrac{49}{5}\)
\(A_{max}=\dfrac{49}{5}\) khi \(x=-\dfrac{3}{5}\)
Áp dụng bất đẳng thức giá trị tuyệt đối sau: |a| - |b| \(\le\) |a + b|. Dấu "=" khi a.b \(\le\) 0
Ta có: A = |2x + 7| - |2x - 3| = |2x + 7|- |3 - 2x| \(\le\) |2x + 7 + 3 - 2x| = 10
Dấu "=" khi (2x+7). (3 - 2x) \(\le\) 0 => (2x +7).(2x - 3) \(\ge\) 0
mà 2x + 7 > 2x - 3 => 2x + 7 \(\le\) 0 hoặc 2x - 3 \(\ge\) 0 => x \(\le\) -7/2 hoặc x \(\ge\) 3/2
Vậy A lớn nhất = 10 khi x \(\le\) -7/2 hoặc x \(\ge\) 3/2
\(A=2x^2+y^2-2xy-2x+y-12\)
\(A=\left(x^2-2xy+y^2\right)+x^2-2x+y-12\)
\(A=\left[\left(x-y\right)^2-2\left(x-y\right).\frac{1}{2}+\frac{1}{4}\right]+\left(x^2-x+\frac{1}{4}\right)-\frac{25}{2}\)
\(A=\left(x-y-\frac{1}{2}\right)^2+\left(x-\frac{1}{2}\right)^2-\frac{25}{2}\)
Do \(\left(x-y-\frac{1}{2}\right)^2\ge0\forall x;y\)
\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow A\ge-\frac{25}{2}\)
Dấu "=" xảy ra khi : \(\hept{\begin{cases}x-y-\frac{1}{2}=0\\x-\frac{1}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=0\end{cases}}\)
Vậy \(A_{Min}=-\frac{25}{2}\Leftrightarrow\left(x;y\right)=\left(\frac{1}{2};0\right)\)
\(A=-2x^2-y^2-2xy-2x+y-12\)
\(-A=2x^2+y^2+2xy+2x-y+12\)
\(-A=\left(x^2+2xy+y^2\right)+x^2+2x-y+12\)
\(-A=\left[\left(x+y\right)^2-2\left(x+y\right).\frac{1}{2}+\frac{1}{4}\right]+\left(x^2+3x+\frac{9}{4}\right)+\frac{19}{2}\)
\(-A=\left(x+y-\frac{1}{2}\right)^2+\left(x+\frac{3}{2}\right)^2+\frac{19}{2}\)
Do \(\left(x+y-\frac{1}{2}\right)^2\ge0\forall x;y\)
\(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge\frac{19}{2}\Leftrightarrow A\le-\frac{19}{2}\)
Dấu "=" xảy ra khi : \(\hept{\begin{cases}x+y-\frac{1}{2}=0\\x+\frac{3}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=2\end{cases}}\)
Vậy \(A_{Max}=-\frac{19}{2}\Leftrightarrow\left(x;y\right)=\left(-\frac{3}{2};2\right)\)
Ta có:
\(A=-\left|2,16-2x\right|-5,9\le-5,9\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(-\left|2,16-2x\right|=0\)
\(\Leftrightarrow2,16=2x\Rightarrow x=1,08\)
Vậy Max(A) = -5,9 khi x = 1,08