Tìm tất cả các số nguyên n để A = 10n+ 7/ 5n-1 nhận giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A nguyên khi (12n + 17) ⋮ (3n + 1)
Ta có:
12n + 17 = 12n + 4 + 13
= 4(3n + 1) + 13
Để (12n + 17) ⋮ (3n + 1) thì 13 ⋮ (3n + 1)
⇒ 3n + 1 ∈ Ư(13) = {-13; -1; 1; 13}
⇒ 3n ∈ {-14; -2, 0; 12}
⇒ n ∈ {-14/3; -2/3; 0; 4}
Mà n là số nguyên
⇒ n ∈ {0; 4}
b) Để A là số nguyên thì ⋮ (10n + 9) (5n - 1)
Ta có:
10n + 9 = 10n - 2 + 11
= 2(5n - 1) + 11
Để (10n + 9) ⋮ (5n - 1) thì 11 ⋮ (5n - 1)
⇒ 5n - 1 ∈ Ư(11) = {-11; -1; 1; 11}
⇒ 5n ∈ {-10; 0; 2; 12}
⇒ n ∈ {-2; 0; 2/5; 12/5}
Mà n là số nguyên
⇒ n ∈ {-2; 0}
Để A nguyên thì \(n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)
để A là số nguyên thì
n+6 chia hết cho n-1
=>(n-1)+7chia hết n-1
=>7chia hết n-1
n-1 thuộc Ư(7)
cậu lập bảng sau đó kết luận hộ tớ nhé
tớ ko lập bảng được
Để A là số nguyên thì \(n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)
a: 12/3n-1 là số nguyên khi 3n-1 thuộc Ư(12)
=>3n-1 thuộc {1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}
mà n là số nguyên
nên n thuộc {0;1;-1}
c: 2n+5/n-3 là số nguyên
=>2n-6+11 chia hết cho n-3
=>n-3 thuộc {1;-1;11;-11}
=>n thuộc {4;2;14;-8}
Để B nguyên thì 5n+1+6 chia hết cho 5n+1
=>\(5n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
mà n nguyên
nên \(n\in\left\{0;1\right\}\)
\(A=\frac{n+6}{n-1}=\frac{n-1+7}{n-1}=1+\frac{7}{n-1}\inℤ\Leftrightarrow\frac{7}{n-1}\inℤ\)
mà \(n\)là số nguyên nên \(n-1\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\)
\(\Leftrightarrow n\in\left\{-6,0,2,8\right\}\).
Answer:
\(M=\frac{10n-3}{5n-3}=2+\frac{3}{5n-3}\)
Để cho \(M\inℤ\Leftrightarrow2+\frac{3}{5n-3}\inℤ\Rightarrow\frac{3}{5n-3}\inℤ\Rightarrow3⋮5n-3\)
\(\Rightarrow5n-3\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow5n\in\left\{4;2;0;6\right\}\)
\(\Rightarrow n\in\left\{\frac{4}{5};\frac{2}{5};0;\frac{6}{5}\right\}\)
\(\Rightarrow n=0\)
Bài 2:
a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3
b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3
\(\frac{n+4}{n-3}\)= \(\frac{n-3+7}{n-3}\)= \(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3
=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}
=> n\(\in\){ 4; 10; 2; -4}
Vậy...
c) Bn thay vào r tính ra
n-3/n-18 là số nguyên => n-3 chia hết cho n-18
n-3 = n-18+15
vì n-18 chia hết cho n-18
=> 15 chia hết cho n-18
n-18 \(\in\){......}
n \(\in\).................
tách cho tử có 1 số hạng chia hết cho mẫu =>số còn lại chia hết