Phân tích thành nhân tử: x^3-y^3+2x^2+2xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3x^2-3xy-5x+5y\)
\(=\left(3x^2-3xy\right)-\left(5x-5y\right)\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x-5\right)\)
b) \(2x^3y-2xy^3-4xy^2-2xy\)
\(=2xy\left(x^2-y^2-2y-1\right)\)
\(=2xy\left[x^2-\left(y^2+2y+1\right)\right]\)
\(=2xy\left[x^2-\left(y+1\right)^2\right]\)
\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)
c) \(x^2+1+2x-y^2\)
\(=\left(x^2+2x+1\right)-y^2\)
\(=\left(x+1\right)^2-y^2\)
\(=\left(x+1+y\right)\left(x+1-y\right)\)
d) \(x^2+4x-2xy-4y+y^2\)
\(=\left(x^2-2xy+y^2\right)+\left(4x-4y\right)\)
\(=\left(x-y\right)^2+4\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y+4\right)\)
e) \(x^3-2x^2+x\)
\(=x\left(x^2-2x+1\right)\)
\(=x\left(x-1\right)^2\)
f) \(2x^2+4x+2-2y^2\)
\(=2\left(x^2+2x+1-y^2\right)\)
\(=2\left[\left(x^2+2x+1\right)+y^2\right]\)
\(=2\left[\left(x+1\right)^2-y^2\right]\)
\(=2\left(x-y+1\right)\left(x+y+1\right)\)
a: =3x(x-y)-5(x-y)
=(x-y)(3x-5)
b: \(=2xy\left(x^2-y^2-2y-1\right)\)
\(=2xy\left[x^2-\left(y^2+2y+1\right)\right]\)
\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)
d:
Sửa đề: x^2+4x-2xy-4y+y^2
=x^2-2xy+y^2+4x-4y
=(x-y)^2+4(x-y)
=(x-y)(x-y+4)
e: =x(x^2-2x+1)
=x(x-1)^2
f: =2(x^2+2x+1-y^2)
=2[(x+1)^2-y^2]
=2(x+1+y)(x+1-y)
a) x3-2x2-x+2
=x(x2-1)+2(-x2+1)
=x(x2-1)-2(x2-1)
=(x2-1)(x-2)
b)
x2+6x-y2+9
=x2+6x+9-y2
=(x+3)2-y2
=(x+3-y)(x+3+y)
\(x^3+y^3+2x^2+2xy\)
\(=\left(x+y\right).\left(x^2-xy+y^2\right)+2x.\left(x+y\right)\)
\(=\left(x+y\right).\left(x^2-xy+y^2+2x\right)\)
a) xy+3x-7y-21
=x(y+3)-7(x+3)
=(x-7)(y+3)
b)2xy-15-6x-5y
=2x(y-3)-5(-3+y)
=(2x-5)(y-3)
c)2x^2y+2xy^2-2x-2y
=2x(xy-1)+2y(xy-1)
=(2x+2y)(xy-1)
x(x+3)-5x(x-5)-5(x+3)
=(x-5)(x+3)-5x(x-5)
=(x-5)(x+3-5x)
Câu cuối mình bị nhầm dòng cuối phải là (x-5)(x+3+x-5)=(x-5)(2x-2)nha bạn
a, \(2xy-x^2+49-y^2=49-\left(x^2-2xy+y^2\right)\)
\(=7^2-\left(x-y\right)^2\)
\(=\left(7-x+y\right)\left(7+x-y\right)\)
b, \(x^3+2x^2+x=x\left(x^2+2x+1\right)=x\left(x+1\right)^2\)
Bài này dễ mà. Chúc bạn học tốt.
a) \(2xy-x^2+49-y^2\)
\(=49-\left(x^2-2xy+y^2\right)\)
\(=49-\left(x-y\right)^2\)
\(=\left(7+x-y\right)\left(7-x+y\right)\)
b) \(x^3+2x^2+x\)
\(=x\left(x^2+2x+1\right)\)
\(=x\left(x+1\right)^2\)
\(x^3-8y^3-2xy\left(x-2y\right)=\left(x-2y\right)\left(x^2+2xy+4y^2\right)-2xy\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2-2xy\right)=\left(x-2y\right)\left(x^2+4y^2\right)\)
\(2x^2-3x-2=2x^2-4x+x-2=2x\left(x-2\right)+x-2=\left(2x+1\right)\left(x-2\right)\)
a)(x3-2x2y)+(4xy2-8y3)=x2(x-2y)+4y2(x-2y)=(x-2y)(x2+4y2)
b)(2x2-4x)+(x-2)=2x(x-2)+(x-2)=(x-2)(2x+1)
\(x^2+y^2-2x-2y+2xy-3\)
\(=x^2+y^2+1-2x-2y+2xy-4\)
\(=\left(x+y-1\right)^2-2^2\)
\(=\left(x+y-3\right).\left(x+y+1\right)\)
Có vẻ đề có chút vấn đề, đề này thì không phân tích được nhé.
Sửa một chút: \(x^3+y^3+2x^2+2xy=\left(x+y\right)\left(x^2-xy+y^2\right)+2x\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2+2x\right)\)
Ta có: x^3-y^3+2x^2+2xy
=(x^3-y^3)+(2x^2+2xy)
=(x-y)(x^2-xy+y^2)+2x(2x+y)