Cho \(x=\frac{\sqrt{2}+1}{2};y=\frac{\sqrt{2}-1}{2}\). Tính giá trị của \(S=x^5+y^5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ĐK: x > 1
\(P=\left(\frac{\sqrt{x-1}}{3+\sqrt{x-1}}+\frac{x+8}{9-\left(x-1\right)}\right):\left(\frac{3\sqrt{x-1}+1}{\left(x-1\right)-3\sqrt{x-1}}-\frac{1}{\sqrt{x-1}}\right)\)
\(P=\frac{\sqrt{x-1}\left(3-\sqrt{x-1}\right)+x+8}{9-\left(x-1\right)}:\frac{3\sqrt{x-1}+1-\left(\sqrt{x-1}-3\right)}{\sqrt{x-1}\left(\sqrt{x-1}-3\right)}\)
\(P=\frac{3\sqrt{x-1}-x+1+x+8}{10-x}:\frac{2\sqrt{x-1}+4}{\sqrt{x-1}\left(\sqrt{x-1}-3\right)}\)
\(P=\frac{3\left(\sqrt{x-1}+3\right)}{10-x}.\frac{\sqrt{x-1}\left(\sqrt{x-1}-3\right)}{2\sqrt{x-1}+4}\)
\(P=\frac{-3\sqrt{x-1}}{2\sqrt{x-1}+4}\)
b) \(x=\sqrt[4]{\frac{17+12\sqrt{2}}{1}}-\sqrt[4]{\frac{17-12\sqrt{2}}{1}}=1+\sqrt{2}-\left(\sqrt{2}-1\right)=2\)
Vậy \(P=\frac{-3\sqrt{2-1}}{2\sqrt{2-1}+4}=-\frac{1}{2}\)
cô Hoàng Thị Thu Huyền làm rõ cho em ý b đc ko ạ chỗ biến đổi x
\(S=x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)\(=\left(x^2+y^2\right)\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-x^2y^2\left(x+y\right)\)
\(=\left[\left(\frac{\sqrt{2}+1}{2}\right)^2+\left(\frac{\sqrt{2}-1}{2}\right)^2\right]\)\(\cdot\left[\left(\frac{\sqrt{2}+1}{2}+\frac{\sqrt{2}-1}{2}\right)^3-3\frac{\sqrt{2}+1}{2}\frac{\sqrt{2}-1}{2}\left(\frac{\sqrt{2}+1}{2}+\frac{\sqrt{2-1}}{2}\right)\right]\)\(-\left(\frac{\sqrt{2}+1}{2}\right)^2\left(\frac{\sqrt{2}-1}{2}\right)^2\left(\frac{\sqrt{2}+1}{2}+\frac{\sqrt{2}-1}{2}\right)\)
\(=\frac{\left(\sqrt{2}+1\right)^2+\left(\sqrt{2}-1\right)^2}{4}\cdot\left[\left(\sqrt{2}\right)^3-\frac{3}{4}\sqrt{2}\right]\)\(-\frac{\left(\sqrt{2}+1\right)^2\left(\sqrt{2}-1\right)^2}{4\cdot4}\sqrt{2}\)
\(=\frac{2+2\sqrt{2}+1+2-2\sqrt{2}+1}{4}\left(2\sqrt{2}-\frac{3\sqrt{2}}{4}\right)-\frac{1}{16}\sqrt{2}\)
\(=\frac{6}{4}\cdot\frac{5\sqrt{2}}{4}-\frac{\sqrt{2}}{16}=\frac{30\sqrt{2}-\sqrt{2}}{16}=\frac{29\sqrt{2}}{16}\)