Câu 1: Tìm giá trị nhỏ nhất của biểu thức sau:
H=↑x-3↑+2020; B=(x-1)2+2021
Câu 2: Cho 3a2-b2/a2+b2=3/4. Tính a2/b2
Câu 3: Cho ab=c2. CMR a2+c2/b2+c2=a/b
Câu 4: Cho a/2=b/5=c/7. Tìm giá trị của biểu thức A=a-b+c/a+2b-c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3x^2-1}{x^2+2}=\dfrac{6x^2-2}{2\left(x^2+2\right)}=\dfrac{7x^2-\left(x^2+2\right)}{2\left(x^2+2\right)}=\dfrac{7x^2}{2\left(x^2+2\right)}-\dfrac{1}{2}\ge=-\dfrac{1}{2}\)
GTNN của biểu thức là \(-\dfrac{1}{2}\), xảy ra khi \(x=0\)
Biểu thức ko tồn tại GTLN
Vì \(\hept{\begin{cases}|x-3|\\|4+x|\end{cases}\ge0}\) nên minH = 0
Với x>0thif D=x+x=2x>0 (1)
Với \(x\le0\) thì D=x-x=0 (2)
Từ (1) và(2) =>:GTNN của D bằng 0 khi và chỉ khi \(x\le0\)
mk nhé bạn ^...^ ^_^
Ta thấy: |x-10| >= 0 (1); |x-10| >= 0 (2)
Cộng 2 bđt cùng chiều (1) và (2) ta được: |x-10| + |x-10| >= 0 <=> A= |x-10| + |x-10| -2 >= -2
=> minA = -2
Dấu đẳng thức xảy ra khi và chỉ khi x=10 và y=-100
Chắc v!! =)))
a) *Xét x=0
==> Giá trị A=2022!(1)
*Xét 0<x≤2022
==> A=0(2)
*Xét x>2022
==> A≥2022!(3)
Từ (1),(2) và (3) ==> Amin=0 khi0<x≤2022
Mà để xmax ==> x=2022
Vậy ...
b)B=\(\dfrac{2018+2019+2020}{x-2021}\)=\(\dfrac{6057}{x-2021}\) (Điều kiện x-2021≠0 hay x≠2021)
Để Bmax ==> x-2021 là số tự nhiên nhỏ nhất
Mà x-2021≠0 =>x-2021=1==>x=2022
Khi đó Bmax=6057
Vậy...
Ta có :\(y=\frac{x^2+2}{x^2+x+1}\)
\(\Leftrightarrow yx^2+yx+y=x^2+2\)
\(\Leftrightarrow x^2\left(y-1\right)+yx+y-2=0\)(1)
*Xét y = 1 thì pt trở thành \(x-1=0\)
\(\Leftrightarrow x=1\)
*Xét \(y\ne1\)thì pt (1) là pt bậc 2 ẩn x
Có \(\Delta=y^2-4\left(y-1\right)\left(y-2\right)\)
\(=y^2-4\left(y^2-3y+2\right)\)
\(=y^2-4y^2+12y-8\)
\(=-3y^2+12y-8\)
Pt (1) có nghiệm khi \(\Delta\ge0\)
\(\Leftrightarrow-3y^2+12y-8\ge0\)
\(\Leftrightarrow\frac{6-2\sqrt{3}}{3}\le y\le\frac{6+2\sqrt{3}}{3}\)
Ta có :
\(\frac{2x-5}{x}=\frac{2x}{x}-\frac{5}{x}=2-\frac{5}{x}\)
Để M có GTNN thì \(\frac{5}{x}\) phải có GTLN hay \(x>0\) và có GTNN
\(\Rightarrow\)\(x=1\)
\(\Rightarrow\)\(M=\frac{2x-5}{x}=\frac{2.1-5}{1}=\frac{-3}{1}=-3\)
Vậy \(M_{min}=-3\) khi \(x=1\)
ta có
can x+1 >=0 voi moi x
can 6-x >=0 voi moi x
=> căn x+1 + căn 6-x >= 0
Q2=7+2\(\sqrt{\left(x+1\right)\left(6-x\right)}\)\(\ge\)7 => Q\(\ge\)\(\sqrt{7}\)
dấu bằng khi x=-1 hoặc x=6
Q2=7+2\(\sqrt{\left(x+1\right)\left(6-x\right)}\)\(\le\)7+x+1+6-x = 14 => Q\(\le\) \(\sqrt{14}\)
dấu bằng khi x+1 = 6-x <=> 2x =5 <=> x=2.5
\(\text{Câu 1: }\)
\(a,\left|x-3\right|\ge0\left(\forall x\in N\right)\)
\(\Rightarrow\left|x-3\right|+2020\ge2020\left(\forall x\in N\right)\)
\(\text{Dấu}"="\text{xảy ra}\Leftrightarrow\left|x-3\right|+2020=2020\)
\(\Leftrightarrow\left|x-3\right|=2020-2020\)
\(\Leftrightarrow\left|x-3\right|=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=0+3\)
\(\Leftrightarrow x=3\) \(\text{Vậy }x=3\text{ để H có GTNN}\)
\(b,\left(x-1\right)^2\ge0\left(\forall x\in N\right)\)
\(\Rightarrow\left(x-1\right)^2+2021\ge2021\left(\forall x\in N\right)\)
\(\text{Dấu}"="\text{xảy ra}\Leftrightarrow\left(x-1\right)^2+2021=2021\)
\(\Leftrightarrow\left(x-1\right)^2=2021-2021\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=0+1\)
\(\Leftrightarrow x=1\) \(\text{Vậy }x=1\text{ để B có GTNN}\)
\(\text{Câu 2:}\)
\(\frac{3a^2-b^2}{a^2+b^2}=\frac{3}{4}\)
\(\Rightarrow\left(3a^2-b^2\right).4=\left(a^2+b^2\right).3\)
\(\Rightarrow12a^2-4b^2=3a^2+3b^2\)
\(\Rightarrow12a^2-3a^2=3b^2+4b^2\left(\text{quy tắc chuyển vế}\right)\)
\(\Rightarrow a^2.\left(12-3\right)=b^2.\left(3+4\right)\)
\(\Rightarrow a^2.9=b^2.7\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{7}{9}\left(\text{tính chất của tỉ lệ thức}\right)\)
\(\text{Câu 3:}\)
\(ab=c^2;\frac{a^2+c^2}{b^2+c^2}\left(1\right)\)
\(\text{Thay }c^2=ab\text{ vào }\left(1\right)\)
\(\Rightarrow\frac{a^2+ab}{b^2+ab}=\frac{a.\left(a+b\right)}{b.\left(a+b\right)}=\frac{a}{b}\left(2\right)\)
\(\text{Từ (1) và (2)}\Rightarrow\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\left(đpcm\right)\)
\(\text{Câu 4: }\)
\(A=\frac{a-b+c}{a+2b-c}\)
\(\frac{a}{2}=\frac{b}{5}\Rightarrow a=\frac{2}{5}.b;\frac{c}{7}=\frac{b}{5}\Rightarrow c=\frac{7}{5}.b\)
\(\text{Thay }a=\frac{2}{5}.b;c=\frac{7}{5}.b\text{ vào }A\)
\(\Rightarrow A=\frac{\frac{2}{5}.b-b+\frac{7}{5}.b}{\frac{2}{5}.b+2b-\frac{7}{5}.b}=\frac{b.\left(\frac{2}{5}-1+\frac{7}{.5}\right)}{b.\left(\frac{2}{5}+2-\frac{7}{5}\right)}=\frac{\frac{2}{5}-\frac{5}{5}+\frac{7}{5}}{\frac{2}{5}+\frac{10}{5}-\frac{7}{5}}=\frac{\frac{2-5+7}{5}}{\frac{2+10-7}{5}}=\frac{4}{5}:1=\frac{4}{5}\)
\(\text{Vậy }A=\frac{4}{5}\)