Bài này lm thế nào vậy mn.
C/m biểu thức ko âm với mọi x:5x^2+y^2-4xy-2y+8x+2013
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
$5x^2+y^2-4xy-2y+8x+2013=(4x^2-4xy+y^2)+x^2-2y+8x+2013$
$=(2x-y)^2+2(2x-y)+x^2+12x+36+1977$
$=(2x-y)^2+2(2x-y)+1+(x+6)^2+1976$
$=(2x-y+1)^2+(x+6)^2+1976\geq 1976>0$ với mọi $x,y$
Do đó biểu thức không âm với mọi $x,y$
3) 5x2 + y2 -4xy - 2y + 8x + 2013
= ( 4x2 + y2 -4xy -2y + 8x ) + x2 + 2013
= ( 2x - y +1)2 + x2 +2013
Vì ( 2x-y+1)2 \(\ge\)0 \(\forall x,y\); x2 \(\ge\)0\(\forall x\)
=> (2x - y+1)2 + x2 \(\ge\)0
=> ( 2x-y +1)2 +x2 + 2013\(\ge\)0
hay A \(\ge0\)\(\forall x,y\)=> A ko âm
\(M=5x^2+2y^2+4xy-2x+4y+6\)
\(=\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\)
\(=\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+1\)
Do \(\left(2x+y\right)^2\ge0\forall x;y\left(x-1\right)^2\ge0\forall x;\left(y+2\right)^2\ge0\forall y\)
\(\Rightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\forall x;y\)
\(\Rightarrow M\ge1>0\forall x;y\)
\(\left(đpcm\right)\)
`a, A= 4xy -xy-2xy`
`= (4-1-2)xy`
`= xy`
Thay `x=2;y=3`
Ta có : `xy=2*3=6`
`b, B= x^2 y -7x^2y-4x^2y`
`=(1-7-4)x^2y`
`= -10x^2y`
Thay `x=2;y=3`
Ta có : `-10x^2y=-10*2^2 *3= -10*4*3=-40*3=-120`
`c, C=10x^2y -x^2y-7x^2y`
`=(10-1-7)x^2y`
`= 2x^2y`
Thay `x=2;y=3`
Ta có : `2x^2y=2*2^2 *3= 2*4*3=8*3=24`
`d,D=5x^2y^2-12x^2y^2+8x^2y^2`
`= (5-12+8)x^2y^2`
`=x^2y^2`
Thay `x=2;y=3`
ta có : `x^2y^2=2^2 *3^2= 4* 9=36`
có chỗ nào bn đọc ko rõ thì ns mik nha, để mik gõ ra cho bn rõ hơn
Anh/ chị viết rõ đề bằng công thức toán được không ạ?
Vd : 1/2(2x+2y+z)^2 là \(\frac{1}{2\left(2x+2y+z\right)^2}\) hay sao?
\(P=8x^3+8y^3+\frac{z^3}{\left(2x+2y+2z\right)\left(4xy+2yz+2zx\right)}\) đúng ko ạ?