K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2021

giúp mình với

 

NV
11 tháng 12 2021

Gọi A là biến cố "sản phẩm chọn được từ lô 2 là loại A"

\(B_1\) là biến cố "viên bi được lấy ra là viên của hộp 1" \(\Rightarrow P\left(B_1\right)=\dfrac{C_5^1}{C_{20}^1}=\dfrac{1}{4}\)

\(B_2\) là biến cố "viên bi được lấy ra là viên bi của hộp 2" \(\Rightarrow P\left(B_2\right)=\dfrac{C_{15}^1}{C_{20}^1}=\dfrac{3}{4}\)

\(P\left(A|B_1\right)=\dfrac{C_3^1}{C_7^1}=\dfrac{3}{7}\)

\(P\left(A|B_2\right)=\dfrac{C_9^1}{C_{15}^1}=\dfrac{3}{5}\)

Xác suất:

\(P\left(A\right)=\dfrac{1}{4}.\dfrac{3}{7}+\dfrac{3}{4}.\dfrac{3}{5}=\dfrac{39}{70}\)

2 tháng 8 2018

Đáp án C

Phương pháp giải:

Chia trường hợp của biến cố, áp dụng các quy tắc đếm cơ bản tìm số phần tử của biến cố

Lời giải:

Lấy 6 sản phẩm từ 20 sản phẩm lô hàng có C 20 6 = 38760 cách  ⇒ n ( Ω )   =   38760

Gọi X là biến cố 6 sản phẩm lấy ra có không quá 1 phế phẩm. Khi đó, ta xét các trường hợp sau:

TH1. 6 sản phẩm lấy ra 0 có phế phẩm  nào => có C 16 6 = 8008 cách

TH2. 6 sản phẩm lấy ra có duy nhất 1 phế phẩm => có C 16 5 . C 4 1   =   17472 cách

Suy ra số kết quả thuận lợi cho biến cố X là n(X) = 8008 + 17472 = 25480 

Vậy xác suất cần tính là

26 tháng 7 2017

Đáp án C

Phương pháp giải:

Chia trường hợp của biến cố, áp dụng các quy tắc đếm cơ bản tìm số phần tử của biến cố

Lời giải:

Lấy 6 sản phẩm từ 20 sản phẩm lô hàng có  cách 

Gọi X là biến cố 6 sản phẩm lấy ra có không quá 1 phế phẩm. Khi đó, ta xét các trường hợp sau:

TH1. 6 sản phẩm lấy ra 0 có phế phẩm  nào => có  cách

 

TH2. 6 sản phẩm lấy ra có duy nhất 1 phế phẩm => có  cách

Suy ra số kết quả thuận lợi cho biến cố X là 

Vậy xác suất cần tính là 

24 tháng 8 2023

Số phần tử của không gian mẫu: \(\left|\Omega\right|=C^6_{20}\)

a) Gọi A là biến cố: "Tất cả đều là chính phẩm."

Ta thấy \(\left|A\right|=C^6_{15}\)

\(\Rightarrow P\left(A\right)=\dfrac{\left|A\right|}{ \left|\Omega\right|}=\dfrac{C^6_{15}}{C^6_{20}}=\dfrac{1001}{7752}\)

b) Gọi B là biến cố: "Tất cả đều là phế phẩm."

 Rõ ràng \(\left|B\right|=0\) (vì chỉ có 5 phế phẩm nhưng ta chọn tới 6 sản phẩm nên không thể có chuyện cả 6 sản phẩm được chọn đều là phế phẩm) \(\Rightarrow P\left(B\right)=0\)

c) Gọi C là biến cố: "Có ít nhất 3 chính phẩm."

\(P_i\) là biến cố: "Có đúng \(i\) chính phẩm." \(\left(3\le i\le6\right)\)

Do \(P_i\) đôi một rời nhau và \(C=\cup^6_{i=3}P_i\) nên \(\left|C\right|=\sum\limits^6_{i=3}\left|P_i\right|\)

Ta thấy \(\left|P_i\right|=C^i_{15}.C^{6-i}_5\) \(\Rightarrow\sum\limits^6_{i=3}\left|P_i\right|=\sum\limits^6_{i=3}C^i_{15}.C^{6-i}_5=38220\)

hay \(\left|C\right|=38220\)

Từ đó \(P\left(C\right)=\dfrac{\left|C\right|}{\left|\Omega\right|}=\dfrac{38220}{C^6_{20}}=\dfrac{637}{646}\)

 

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Số kết quả xảy ra khi chọn ngẫu nhiên 3 sản phẩm là: \(C_{20}^3\) ( kết quả )

b) Chọn ngẫu nhiên 3 sản phẩm từ  20 sản phẩm  ta được một tổ hợp chập 3 của 20. Do đó, số phần tử của không gian mẫu là:  \(n\left( \Omega  \right) = C_{20}^3\)( phần tử)

Gọi A là biến cố “Cả 3 sản phẩm được chọn là chính phẩm”

Để chọn được cả 3 sản phẩm đều là chính phẩm thì ta phải chọn 3 sản phẩm từ 16 chính phẩm tức là ta được một tổ hợp chập 3 của 16 phần tử. Do đó số phần tử của biến cố A là: \(n\left( A \right) = C_{16}^3\)( phần tử)

Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{C_{16}^3}}{{C_{20}^3}} = \frac{{28}}{{57}}\).