Tìm x, biết:
(x+1) (2-x) - (5x+5) (x+2) =-4x^2+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(-4x+5+2x-1=3\Leftrightarrow-2x=-1\Leftrightarrow x=\dfrac{1}{2}\)
b, \(-2x+2=2\Leftrightarrow x=0\)
c, \(-2x-6=-8\Leftrightarrow x=1\)
Bạn nên viết lại đề bài cho sáng sủa, rõ ràng để người đọc dễ hiểu hơn.
f: =>4(x^2+4x-5)-x^2-7x-10=3(x^2+x-2)
=>4x^2+16x-20-x^2-7x-10-3x^2-3x+6=0
=>6x-24=0
=>x=4
e: =>8x+16-5x^2-10x+4(x^2-x-2)=4-x^2
=>-5x^2-2x+16+4x^2-4x-8=4-x^2
=>-6x+8=4
=>-6x=-4
=>x=2/3
d: =>2x^2+3x^2-3=5x^2+5x
=>5x=-3
=>x=-3/5
b: =>2x^2-8x+3x-12+x^2-7x+10=3x^2-12x-5x+20
=>-12x-2=-17x+20
=>5x=22
=>x=22/5
<=> 2(x^2-25) - 2x^2+3x-4x+6 + x^3-8x = x^3+1
=>2x^2-50 - 2x^2 -9x+6+x^3-x^3-1 = 0
<=>-9x - 45 =0
<=>-9x=45
<=>x=-5
Còn phần b và c bạn cứ khai triển ra,mình phải đi học nên không có thời gian giải cho bạn
Tìm x biết :
a) 3(5/3x-7)-2(1.5x+6)-(5-x)(x+4)=80+x^2
b) 4/5x^2(x/3-1/2)-(1/5x-2/3)(4x^2/3+1)=22/45x^2
`Answer:`
\(3\left(\frac{5}{3}x-7\right)-2\left(1.5x+6\right)-\left(5-x\right)\left(x+4\right)=80+x^2\)
\(\Leftrightarrow3\left(\frac{5x}{3}-7\right)-2\left(5x+6\right)-\left(5-x\right)\left(x+4\right)=80+x^2\)
\(\Leftrightarrow5x-21-10x-12-5x-20+x^2+4x=80+x^2\)
\(\Leftrightarrow5x-21-10x-12-5x-20+4x=80\)
\(\Leftrightarrow-6x-53=80\)
\(\Leftrightarrow-6x=133\)
\(\Leftrightarrow x=-\frac{133}{6}\)
\(\frac{4}{5}x^2\left(\frac{x}{3}-\frac{1}{2}\right)-\left(\frac{1}{5}x-\frac{2}{3}\right)\left(4\frac{x^2}{3}+1\right)=\frac{22}{45}x^2\)
\(\Leftrightarrow36x^2\left(\frac{x}{3}-\frac{1}{2}\right)-45\left(\frac{x}{5}-\frac{2}{3}\right)\left(\frac{4x^2}{3}+1\right)=22x^2\)
\(\Leftrightarrow12x^3-18x^2-12x^3-9x+40x^2+30=22x^2\)
\(\Leftrightarrow22x^2-9x+30=22x^2\)
\(\Leftrightarrow-9x+30=0\)
\(\Leftrightarrow-9x=-30\)
\(\Leftrightarrow x=\frac{10}{3}\)
( x + 1 )( 2 - x ) - ( 5x + 5 )( x + 2 ) = -4x2 + 2
⇔ -x2 + x + 2 - ( 5x2 + 15x + 10 ) = -4x2 + 2
⇔ -x2 + x + 2 - 5x2 - 15x - 10 = -4x2 + 2
⇔ -6x2 - 14x - 8 + 4x2 - 2 = 0
⇔ -2x2 - 14x - 10 = 0
⇔ -2( x2 + 7x + 5 ) = 0
⇔ x2 + 7x + 5 = 0 (*)
Δ = b2 - 4ac = 72 - 4.5.1 = 49 - 20 = 29
Δ > 0 nên (*) có hai nghiệm phân biệt :
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-7+\sqrt{29}}{2}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-7-\sqrt{29}}{2}\end{cases}}\)
Vậy ... ( sao nghiệm xấu thế nhỉ ? )