Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x biết :
a) 3(5/3x-7)-2(1.5x+6)-(5-x)(x+4)=80+x^2
b) 4/5x^2(x/3-1/2)-(1/5x-2/3)(4x^2/3+1)=22/45x^2
`Answer:`
\(3\left(\frac{5}{3}x-7\right)-2\left(1.5x+6\right)-\left(5-x\right)\left(x+4\right)=80+x^2\)
\(\Leftrightarrow3\left(\frac{5x}{3}-7\right)-2\left(5x+6\right)-\left(5-x\right)\left(x+4\right)=80+x^2\)
\(\Leftrightarrow5x-21-10x-12-5x-20+x^2+4x=80+x^2\)
\(\Leftrightarrow5x-21-10x-12-5x-20+4x=80\)
\(\Leftrightarrow-6x-53=80\)
\(\Leftrightarrow-6x=133\)
\(\Leftrightarrow x=-\frac{133}{6}\)
\(\frac{4}{5}x^2\left(\frac{x}{3}-\frac{1}{2}\right)-\left(\frac{1}{5}x-\frac{2}{3}\right)\left(4\frac{x^2}{3}+1\right)=\frac{22}{45}x^2\)
\(\Leftrightarrow36x^2\left(\frac{x}{3}-\frac{1}{2}\right)-45\left(\frac{x}{5}-\frac{2}{3}\right)\left(\frac{4x^2}{3}+1\right)=22x^2\)
\(\Leftrightarrow12x^3-18x^2-12x^3-9x+40x^2+30=22x^2\)
\(\Leftrightarrow22x^2-9x+30=22x^2\)
\(\Leftrightarrow-9x+30=0\)
\(\Leftrightarrow-9x=-30\)
\(\Leftrightarrow x=\frac{10}{3}\)
Tìm x biết :
a) 3(5/3x-7)-2(1.5x+6)-(5-x)(x+4)=80+x^2
b) 4/5x^2(x/3-1/2)-(1/5x-2/3)(4x^2/3+1)=22/45x^2
- 2(x+5)(x-5)-(x+2)(2x-3)+x(x^2-8)=(x+1)(x^2-x+1)
<=> 2(x^2-25) - 2x^2+3x-4x+6 + x^3-8x = x^3+1
=>2x^2-50 - 2x^2 -9x+6+x^3-x^3-1 = 0
<=>-9x - 45 =0
<=>-9x=45
<=>x=-5
Còn phần b và c bạn cứ khai triển ra,mình phải đi học nên không có thời gian giải cho bạn
Answer:
\(3x^2-4x=0\)
\(\Rightarrow x\left(3x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{4}{3}\end{cases}}\)
\(\left(x^2-5x\right)+x-5=0\)
\(\Rightarrow x\left(x-5\right)+\left(x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)
\(x^2-5x+6=0\)
\(\Rightarrow x^2-2x-3x+6=0\)
\(\Rightarrow\left(x^2-2x\right)-\left(3x-6\right)=0\)
\(\Rightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
\(5x\left(x-3\right)-x+3=0\)
\(\Rightarrow5x\left(x-3\right)-\left(x-3\right)=0\)
\(\Rightarrow\left(5x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x-1=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=3\end{cases}}\)
\(x^2-2x+5=0\)
\(\Rightarrow\left(x^2-2x+1\right)+4=0\)
\(\Rightarrow\left(x-1\right)^2=-4\) (Vô lý)
Vậy không có giá trị \(x\) thoả mãn
\(x^2+x-6=0\)
\(\Rightarrow x^2+3x-2x-6=0\)
\(\Rightarrow x.\left(x+3\right)-2\left(x+3\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}}\)
a) \(4x\left(5x+2\right)-\left(10x-3\right)\left(2x+7\right)=133\)
\(=\left(20x^2+8x\right)-\left(20x^2+64x-21\right)=133\)
\(=20x^2+8x-20x^2-64x+21=133\)
\(=-56x=112\)
\(\Leftrightarrow x=-2\)
b) \(4\left(x-1\right)\left(x+5\right)+\left(x+2\right)\left(x+5\right)=5\left(x-1\right)\left(x+2\right)\)
\(\Leftrightarrow\left(x+5\right)\left(4x-4+x+2\right)=5\left(x-1\right)\left(x+2\right)\)
\(\Leftrightarrow\left(x+5\right)\left(5x-2\right)=\left(5x-5\right)\left(x+2\right)\)
\(\Leftrightarrow5x^2+23x-10=5x^2+5x-10\)
\(\Leftrightarrow23x=5x\)
\(\Leftrightarrow18x=0\Leftrightarrow x=0\)
a) \(4x\left(5x+2\right)-\left(10x-3\right)\left(2x+7\right)=133\)
\(\Leftrightarrow20x^2+8x-\left[10x.\left(2x+7\right)-3.\left(2x+7\right)\right]=133\)
\(\Leftrightarrow20x^2+8x-\left(20x^2+70x-6x-21\right)=133\)
\(\Leftrightarrow20x^2+8x-20x^2-70x+6x+21=133\)
\(\Leftrightarrow8x-70x+6x=133-21\)
\(\Leftrightarrow-56x=112\)
\(\Leftrightarrow x=-\frac{112}{56}=-2\)
Vậy : \(x=-2\)
( x + 1 )( 2 - x ) - ( 5x + 5 )( x + 2 ) = -4x2 + 2
⇔ -x2 + x + 2 - ( 5x2 + 15x + 10 ) = -4x2 + 2
⇔ -x2 + x + 2 - 5x2 - 15x - 10 = -4x2 + 2
⇔ -6x2 - 14x - 8 + 4x2 - 2 = 0
⇔ -2x2 - 14x - 10 = 0
⇔ -2( x2 + 7x + 5 ) = 0
⇔ x2 + 7x + 5 = 0 (*)
Δ = b2 - 4ac = 72 - 4.5.1 = 49 - 20 = 29
Δ > 0 nên (*) có hai nghiệm phân biệt :
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-7+\sqrt{29}}{2}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-7-\sqrt{29}}{2}\end{cases}}\)
Vậy ... ( sao nghiệm xấu thế nhỉ ? )