K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2020

chia cho3 đàu tiên

=(2+22)+(23+24)+..+(259+260)

=(2+22)+(2+22)nhân22+(2+22)+...+(2+22)nhân258

=6+6nhân22+...+6nhân258chia hết cho 3

câu sau làm giống trên

22 tháng 7 2016

A=2+22++23+....+260

A=(2+22) + (23+24) + .......+(259+260)

A=[2.(1+2)] + [23.(1+2)] + ............+ [259.(1+2)]

A=   2.3      +     23.3     +..............+   259.3 

A= ( 2+23+.............+259) . 3

=>A chia hết cho 3

22 tháng 7 2016

Chia hết cho 3 bạn ghép 2 số 

Chia hết cho 7 bạn ghép 3 số 

Chia hết cho 15 bạn ghép 4 số

22 tháng 7 2016

A = 2 + 2+ 23 + .... + 260

   = (2 + 22) + (2+ 24) + .... + (259 + 260)

   = 2.(1 + 2) + 23.(1 + 2) + .... + 259.(1 + 2)

   = 2.3 + 23.3 + .... + 259.3

   = 3.(2 + 23 + ..... +259) chia hết cho 3

DD
23 tháng 11 2021

\(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+...+2^{57}\right)⋮5\)

\(A=2+2^2+2^3+2^4+...+2^{60}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{58}\right)⋮7\).

hoàn đức hà là giáo viên trên olm phải ko?

29 tháng 10 2023

\(A=2+2^2+...+2^{60}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(A=2\cdot3+2^3\cdot3+...+2^{59}\cdot3\)

\(A=3\cdot\left(2+2^3+...+2^{59}\right)\)

Vậy A chia hết cho 3 

_______________

\(A=2+2^2+2^3+...+2^{60}\)

\(A=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\)

\(A=2\cdot5+2^2\cdot5+...+2^{58}\cdot5\)

\(A=5\cdot\left(2+2^2+...+2^{58}\right)\)

Vậy A ⋮ 5

___________________

\(A=2+2^2+2^3+...+2^{60}\)

\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(A=2\cdot7+2^4\cdot7+...+2^{58}\cdot7\)

\(A=7\cdot\left(2+2^4+...+2^{58}\right)\)

Vậy A ⋮ 7 

24 tháng 10 2023

A = 2 + 2² + 2³ + ... + 2⁶⁰

= (2 + 2²) + (2³ + 2⁴) + ... + (2⁵⁹ + 2⁶⁰)

= 2.(1 + 2) + 2³.(1 + 2) + ... + 2⁵⁹.(1 + 2)

= 2.3 + 2³.3 + ... + 2⁵⁹.3

= 3.(2 + 2³ + ... + 2⁵⁹) ⋮ 3

Vậy A ⋮ 3

------

A = 2 + 2² + 2³ + ... + 2⁶⁰

= (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2⁵⁸ + 2⁵⁹ + 2⁶⁰)

= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2⁵⁸.(1 + 2 + 2²)

= 2.7 + 2⁴.7 + ... + 2⁵⁸.7

= 7.(2 + 2⁴ + ... + 2⁵⁸) ⋮ 7

Vậy A ⋮ 7

--------

A = 2 + 2² + 2³ + ... + 2⁶⁰

= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2⁵⁷ + 2⁵⁸ + 2⁵⁹ + 2⁶⁰)

= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2⁵⁶.(2 + 2² + 2³ + 2⁴)

= 30.(1 + 2⁴ + ... + 2⁵⁶)

= 5.6.(1 + 2⁴ + ... + 2⁵⁶) ⋮ 5

Vậy A ⋮ 5

2 tháng 11 2023

\(A=2+2^2+2^3+...+2^{60}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(A=6+2^2.\left(2+2^2\right)+...+2^{58}.\left(2+2^2\right)\)

\(A=6+2^2.6+...+2^{58}.6\)

\(A=6.\left(1+2^2+...+2^{58}\right)\) 

Vì \(6⋮3\) nên \(6.\left(1+2^2+...+2^{58}\right)⋮3\)

Vậy \(A⋮3\)

___________

\(A=2+2^2+2^3+...+2^{60}\)

\(A=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(A=14+...+2^{57}.\left(2+2^2+2^3\right)\)

\(A=14+...+2^{57}.14\)

\(A=14.\left(1+...+2^{57}\right)\)

Vì \(14⋮7\) nên \(14.\left(1+...2^{57}\right)⋮7\)

Vậy \(A⋮7\)

____________

\(A=2+2^2+2^3+...+2^{60}\)

\(A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(A=30+...+2^{56}.\left(2+2^2+2^3+2^4\right)\)

\(A=30+...+2^{56}.30\)

\(A=30.\left(1+...+2^{56}\right)\)

Vì \(30⋮5\) nên \(30.\left(1+...+2^{56}\right)⋮5\)

Vậy \(A⋮7\)

\(#WendyDang\)

20 tháng 10 2015

A=(2+2^2)+...+(2^59+2^60) 
=2(1+2)+...+2^59(1+2) 
=3(2+2^3+...+2^59) 
nên A chia hết cho 3. 
A= (2+2^2+2^3)+...+(2^58+2^59+2^60) 
=2(1+2+2^2)+...+2^58(1+2+2^2) 
=7(2+2^4+..+2^58) 
nên A chia hết cho 7 
A= (2+2^2+2^3+2^4)+....+(2^57+2^58+2^59+2^6... 
=2(1+2+2^2+2^3)+....+2^57(1+2+2^2+2^3)... 
=15(2+2^5+...+2^57) 
nên A chia hết cho 15

tick di ban

3 tháng 10 2015

A={2+2^2}+{2^3+2^4}+.......+{2^59+2^60}

={2.1+2.2}+{2^3.1+2^3.2}+....+{2^59.1+2^59.2}

=2{1+2}+2^3{1+2}+...+2^59{1+2}

=2.3+2^3.3+.....+2^59.3

=3.(2+2^3+...+2^59)

vi co thua so 3 => tich do chia het cho 3

12 tháng 10 2022

A={2+2^2}+{2^3+2^4}+.......+{2^59+2^60}

={2.1+2.2}+{2^3.1+2^3.2}+....+{2^59.1+2^59.2}

=2{1+2}+2^3{1+2}+...+2^59{1+2}

=2.3+2^3.3+.....+2^59.3

=3.(2+2^3+...+2^59)

vi co thua so 3 => tich do chia het cho 3

23 tháng 1 2017

A=2x(1+2)+23x(1+2)+...+259x(1+2)

=2x3+23x3+...+259x3

=3x(2+23+...+259) chia hết cho 3

vậy A chia hết cho 3