\(Cho\)\(a,b,c\ge0\)và \(a+b+c=6\)Tìm giá trị nhỏ nhất của
\(M=\sqrt{\left(a+1\right)^3}+\sqrt{\left(b+2\right)^3}+\sqrt{\left(c+3\right)^3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)
\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)
\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)
\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)
Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình
- Bổ sung điều kiện: \(a,b,c>0\)
Ta chứng minh bất đẳng thức:
\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\) (bạn tự chứng minh bằng phép biến đổi tương đương)
Áp dụng bất đẳng thức trên ta có:
\(P=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)
\(\le3\left[\left(\sqrt{a+b}\right)^2+\left(\sqrt{b+c}\right)^2+\left(\sqrt{c+a}\right)^2\right]\)
\(=6\left(a+b+c\right)=6.3=18\)
\(\Rightarrow P\le\sqrt{18}=3\sqrt{2}\)
Dấu "=" xảy ra khi a=b=c=1.
Vậy \(MinP=\sqrt{18}\)
có cả mấy bất đẳng thức đó hả
bn viết công thức tổng quát ra cho mk vs
mk thanks