K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2020

Ta có:

\(G=x^2+3y^2+2xy-6y+3\)

\(G=\left(x^2+2xy+y^2\right)+\left(2y^2-6y+\frac{18}{4}\right)-\frac{3}{2}\)

\(G=\left(x+y\right)^2+2\left(y-\frac{3}{2}\right)^2-\frac{3}{2}\ge-\frac{3}{2}\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+y\right)^2=0\\2\left(y-\frac{3}{2}\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{3}{2}\end{cases}}\)

Vậy Min(G) = -3/2 khi \(\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{3}{2}\end{cases}}\)

28 tháng 10 2020

G = x2 + 3xy2 + 2xy - 6y + 3

<=> G = ( x2 + 2xy + y2 ) + ( y2 - 6y + 9 ) - 6

<=> G = ( x + y )2 + ( y - 3 )2 - 6

Vì ( x + y )2\(\ge\)0 ; ( y - 3 )2\(\ge\)0\(\forall\)x ; y

=> G = ( x + y )2 + ( y - 3 )2 - 6\(\ge\)- 6

Dấu "=" xảy ra <=>\(\orbr{\begin{cases}\left(x+y\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-y\\y=3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\y=3\end{cases}}\)

Vậy minG = - 6 <=> x = - 3 ; y = 3

27 tháng 9 2021

\(-5x^2-2xy-2y^2+14x+10y-1\\ =-\left(x^2+2xy+y^2\right)-\left(4x^2-2\cdot2\cdot\dfrac{7}{2}x+\dfrac{49}{4}\right)-\left(y^2-10y+25\right)+\dfrac{55}{4}\\ =-\left(x+y\right)^2-\left(2x-\dfrac{7}{2}\right)^2-\left(y-5\right)^2+\dfrac{55}{4}\le\dfrac{55}{4}\\ Max\Leftrightarrow\left\{{}\begin{matrix}x=-y\\2x=\dfrac{7}{2}\\y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=\dfrac{7}{4}\\y=5\end{matrix}\right.\Leftrightarrow x,y\in\varnothing\)

Vậy dấu \("="\) ko xảy ra

a: Ta có: \(-x^2+3x\)

\(=-\left(x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}\right)\)

\(=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)

a: \(x^2+3y^2-4x+6y+7=0\)

\(\Leftrightarrow x^2-4x+4+3y^2+6y+3=0\)

\(\Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\)

\(\Leftrightarrow\left(x,y\right)=\left(-2;1\right)\)

22 tháng 9 2021

\(x^2+3y^2-4x+6y+7=0\\ \Leftrightarrow\left(x^2-4x+4\right)+\left(3y^2+6y+3\right)=0\\ \Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

\(3x^2+y^2+10x-2xy+26=0\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(2x^2+10x+\dfrac{25}{8}\right)+\dfrac{183}{8}=0\\ \Leftrightarrow\left(x-y\right)^2+2\left(x^2+2\cdot\dfrac{5}{2}x+\dfrac{25}{4}\right)+\dfrac{183}{8}=0\\ \Leftrightarrow\left(x-y\right)^2+2\left(x+\dfrac{5}{2}\right)^2+\dfrac{183}{8}=0\\ \Leftrightarrow x,y\in\varnothing\)

Sửa đề: \(3x^2+6y^2-12x-20y+40=0\)

\(\Leftrightarrow\left(3x^2-12x+12\right)+\left(6y^2-20y+\dfrac{50}{3}\right)+\dfrac{34}{3}=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y^2-2\cdot\dfrac{5}{3}y+\dfrac{25}{9}\right)+\dfrac{34}{3}=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y-\dfrac{5}{3}\right)^2+\dfrac{34}{3}=0\\ \Leftrightarrow x,y\in\varnothing\)

\(2\left(x^2+y^2\right)=\left(x+y\right)^2\\ \Leftrightarrow2x^2+2y^2=x^2+2xy+y^2\\ \Leftrightarrow x^2-2xy+y^2=0\\ \Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x-y=0\Leftrightarrow x=y\)

21 tháng 9 2021

xy là x.y hay là x và y vậy bn

21 tháng 9 2021

X và y là số nguyên phải ko

15 tháng 12 2017

a) 10x(x-y) - 6y(y-x)
= 10x(x-y) +6y ( x-y)
=(10x+6y) (x-y)
b) 3x2 + 5y - 3xy -5x
= 3x(x-y) + 5(y-x)
= 3x(x-y) -5(x-y)
= (3x-5) ( x-y)
c) 3y2 - 3z2 +3x2 + 6xy
=3(y2 - z2 + x2 + 2xy)
=3[(x2 +2xy+y2)-z2 ]
=3[(x+y)2 - z2 ]
=3(x+y-z) (x+y+z)
d) 16x3 + 54y3
=2(8x3 + 27y3 )
=2[(2x)3 + (3y)3 ]
=2(2x+3y) (4x2 - 6xy + 9y2 )
e) x2 - 25 -2xy+y2
=(x2-2xy+y2)-25
=(x-y)2 -52
=(x-y-5) (x-y+5)
f) (mình chưa làm ra )
{mong m.n bổ sung thêm..}

24 tháng 12 2017

mấy câu trên bạn kia đã trả lời rồi nên mk k làm lại nx

f, x5 - 3x4 + 3x3 - x2

= x2 (x3 - 3x2 + 3x -1)

= x2 (x - 1)3

Chúc bạn học tốt!

25 tháng 9 2023

loading...loading...

16 tháng 1 2023

x2 - 3y2 + 2xy + 2x - 4y - 7 = 0

<=> 4.(x2 - 3y2 + 2xy + 2x - 4y - 7) = 0

<=> 4x2 - 12y2 + 8xy + 8x - 16y - 28 = 0

<=> (4x2 + 8xy + 4y2) + (8x + 8y) + 4 - 16y2 - 24y - 32 = 0

<=> (2x + 2y)2 + 4(2x + 2y) + 4 - (16y2 + 24y + 9) = 23

<=> (2x + 2y + 2)2 - (4y + 3)2 = 23

<=> (2x + 6y + 5)(2x - 2y - 1) = 23

\(x;y\inℤ\Rightarrow2x+6y+5;2x-2y-1\inℤ\) 

Lập bảng : 

2x + 6y + 5 1 23 -1 -23
2x - 2y - 1 23 1 -23 -1
x 17/2(loại) 3 -9 -7/2(loại)
y   2 2  

Vậy (x;y) = (3;2) ; (-9;2)