K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2020

Sửa đề: \(\sqrt{2010}-2\sqrt{2012}+\sqrt{2014}< 0\)

Ta có: \(\left(\sqrt{2010}+\sqrt{2014}\right)^2\)

\(=2010+2\sqrt{2010\cdot2014}+2014\)

\(=4024+2\sqrt{\left(2012-2\right)\left(2012+2\right)}\)

\(=2\cdot2012+2\sqrt{2012^2-2^2}\)

\(< 2\cdot2012+2\cdot\sqrt{2012^2}=2\cdot2012+2\cdot2012\)

\(=4\cdot2012=\left(2\sqrt{2012}\right)^2\)

\(\Rightarrow\sqrt{2010}+\sqrt{2014}< 2\sqrt{2012}\)

\(\Leftrightarrow\sqrt{2010}-2\sqrt{2012}+\sqrt{2014}< 0\)

27 tháng 10 2020

Không đc sửa đề nhé ! Đây là bài chuẩn đấy .

25 tháng 7 2019

\(\frac{1}{2\sqrt{n+1}}=\frac{1}{\sqrt{n+1}+\sqrt{n+1}}< \frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)

=> \(\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}\)(1)

\(\frac{1}{2\sqrt{n}}=\frac{1}{\sqrt{n}+\sqrt{n}}>\frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)=> \(\frac{1}{2\sqrt{n}}>\sqrt{n+1}-\sqrt{n}\)(2)

Từ (1) và (2) => \(\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}< \frac{1}{2\sqrt{n}}\)

25 tháng 2 2018

Dễ k cho mình trước rồi mình làm cho

25 tháng 2 2018

K phai lop 7 nen k phai lam. Biet dau ma lam 

18 tháng 2 2017

ko bit

18 tháng 2 2017

ai giúp mình mình cảm ơn

11 tháng 8 2018

Áp dụng BĐT Bunhiacopxki , ta có :

\(\left(2014-x+x-2012\right)\left(1^2+1^2\right)\ge\left(\sqrt{2014-x}+\sqrt{x-2012}\right)^2\)

\(\Leftrightarrow\left(\sqrt{2014-x}+\sqrt{x-2012}\right)^2\le4\left(2012\le x\le2014\right)\)

\(\Leftrightarrow\sqrt{2014-x}+\sqrt{x-2012}\le2\)

\("="\Leftrightarrow x=2013\left(TM\right)\)

6 tháng 7 2017

Ta có:

\(\left(\sqrt{n+a}+\sqrt{n-a}\right)^2< \left(1+1\right)\left(n+a+n-a\right)=4n\)

\(\Rightarrow\sqrt{n+a}+\sqrt{n-a}< \sqrt{4n}=2\sqrt{n}\)

cm thì xong r` mà BĐT trên thì + biểu thức dưới là - là sao ??