chứng minh rằng mọi số tự nhiên n ta có :
n(n+2)(n+7) chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
Ta có: \(3n+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)
cảm ơn nha!!! Cho mik/em hỏi sao có mỗi bài 5 vậy bạn/anh/chị.
a: \(\left(n+3\right)^2-n^2=\left(n+3+n\right)\left(n+3-n\right)\)
\(=3\left(2n+3\right)⋮3\)
b: Đặt A=\(\left(n-5\right)^2-n^2\)
\(A=\left(n-5\right)^2-n^2\)
\(=n^2-10n+25-n^2\)
\(=-10n+25=5\left(-2n+5\right)⋮5\)
\(A=\left(n-5\right)^2-n^2\)
\(=-10n+25\)
\(-10n⋮2;25⋮̸2\)
=>-10n+25 không chia hết cho 2
=>A không chia hết cho 2
(n + 3)² - n² = n² + 6n + 9 - n²
= 6n + 9
= 3(3n + 3) ⋮ 3
Vậy [(n + 3)² - n²] ⋮ 3 với mọi n ∈ ℕ
--------
(n - 5)² - n² = n² - 10n + 25 - n²
= -10n + 25
= -5(2n - 5) ⋮ 5
Do -10n ⋮ 2
25 không chia hết cho 2
⇒ -10n + 25 không chia hết cho 2
Vậy [(n - 5)² - n²] ⋮ 5 và không chia hết cho 2 với mọi n ∈ ℕ
Xét n sẽ có 3 dạng sau: 3k ; 3k+1 ; 3k+2 \(\left(k\inℕ\right)\)
Nếu n = 3k khi đó:
n(n+2)(n+7) = 3k(3k+2)(3k+7) chia hết cho 3
=> đpcm (1)
Nếu n = 3k+1 khi đó:
n(n+2)(n+7) = (3k+2)(3k+3)(3k+8) = 3(k+1)(3k+2)(3k+8) chia hết cho 3
=> đpcm (2)
Nếu n = 3k+2 khi đó:
n(n+2)(n+7) = (3k+2)(3k+4)(3k+9) = 3(k+3)(3k+2)(3k+4) chia hết cho 3
=> đpcm (3)
Từ (1),(2) và (3) => Với mọi số tự nhiên n thì n(n+2)(n+7) chia hết cho 3
=> đpcm
\(+,n⋮3\Rightarrow n\left(n+2\right)\left(n+7\right)⋮3\)
\(+,n+1⋮3\Rightarrow n+1+3.2=n+7⋮3\Rightarrow n\left(n+2\right)\left(n+7\right)⋮3\)
\(+,n+2⋮3\Rightarrow ddpcm\)