Tìm x : 4x^3 + x^2 = 4x
Giúp với , mình cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=\left(x^2-x\right)\left(x^2-x-12\right)\\ A=\left(x^2-x\right)^2-12\left(x^2-x\right)\\ A=\left(x^2-x\right)^2-12\left(x^2-x\right)+36-36\\ A=\left(x^2-x+6\right)^2-36\ge-36\\ A_{min}=-36\Leftrightarrow x^2-x+6=0\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\\ b,B=4x^4+4x^3+5x^2+4x+3\\ B=\left(4x^4+4x^3+x^2\right)+\left(x^2+4x+4\right)-1\\ B=x^2\left(2x+1\right)^2+\left(x+2\right)^2-1\ge-1\\ B_{min}=-1\Leftrightarrow\left\{{}\begin{matrix}x\left(2x+1\right)=0\\x+2=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Vậy dấu \("="\) không xảy ra
a: \(A=4x^2-4x+1-4=\left(2x-1\right)^2-4>=-4\forall x\)
Dấu '=' xảy ra khi x=1/2
a)\(x^{23}=64.x^{20}\)
\(\Leftrightarrow\frac{x^{23}}{x^{20}}=64\)
\(\Leftrightarrow x^3=64\Rightarrow x=4\)
b)\(\left(4x-3\right)^4=3-4x\)
\(\Leftrightarrow\left(3-4x\right)^4=3-4x\)
\(\Leftrightarrow\left(3-4x\right)^3=1\)
\(\Leftrightarrow3-4x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
\(x^3+4x^2+x-6=0\)
\(\Rightarrow\left(x-1\right)\left(x+2\right)\left(x+3\right)=0\)
Th1 : \(x-1=0\Rightarrow x=1\)
Th2 : \(x+2=0\Rightarrow x=-2\)
Th3 : \(x+3=0\Rightarrow x=-3\)
\(a,\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=8\\x^3=-8\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow4x-3-x-5=30-3x\\ \Leftrightarrow4x-x+3x=30+5+3\\ \Leftrightarrow6x=38\\ \Leftrightarrow x=\dfrac{19}{3}\)
\(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\\ \Leftrightarrow x^2+6x+9-x^2+4=4x+17\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\)
\(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\\ \Leftrightarrow x^2+6x+9-x^2+4=4x+17\\ \Leftrightarrow x^2-x^2+6x-4x=17-4-9\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=\dfrac{4}{2}=2\)
a) (x-3)3-3+x=0
=> (x-3)3+(x-3)=0
=> (x-3)(x2-6x+10)
=> \(\left[{}\begin{matrix}x-3=0\\x^2-6x+10=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=3\\\left(x-3\right)^2=1\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=3\\x=4\\x=2\end{matrix}\right.\)
4x3 + x2 = 4x
⇔ 4x3 + x2 - 4x = 0
⇔ x( 4x2 + x - 4 ) = 0
⇔ x = 0 hoặc 4x2 + x - 4 = 0
+) 4x2 + x - 4 = 0 (*)
Δ = b2 - 4ac = 12 - 4.4.(-4) = 65
Δ > 0 nên (*) có hai nghiệm phân biệt
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-1+\sqrt{65}}{8}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-1-\sqrt{65}}{8}\end{cases}}\)
Vậy \(S=\left\{0;\frac{-1\pm\sqrt{65}}{8}\right\}\)