Cho B = \(\sqrt{1-6x+9x^2}-3x\)
a) Rút gọn B
b) Tính giá trị của B khi x = -0,5 ; 0 ; 0,5
c) Tìm x để B > 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(B=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)ĐK : \(x>0;x\ne1\)
\(=\dfrac{x}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)
b,Ta có \(x=3+2\sqrt{2}=\left(\sqrt{2}+1\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{2}+1\)
Vậy \(B=\sqrt{2}+1-1=\sqrt{2}\)
a) Ta có: \(B=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)
\(=\dfrac{x}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}\)
\(=\sqrt{x}-1\)
b) Thay \(x=3+2\sqrt{2}\) vào B, ta được:
\(B=\sqrt{2}+1-1=\sqrt{2}\)
\(A=\frac{3\left(x+\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{3x+3\sqrt{x}-3-x+2\sqrt{x}-1-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{\sqrt{x}\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
b) \(x=3+2\sqrt{2}=\left(1+\sqrt{2}\right)^2\)
\(\sqrt{x}=1+\sqrt{2}\)
ý b tự thay vào nha
\(b.\)
\(=\sqrt{\left(3a\right)^2\cdot\left(b-2\right)^2}\)
\(=\left|3a\right|\cdot\left|b-2\right|\)
Với : \(a=2,b=-\sqrt{3}\)
\(2\cdot3\cdot\left(-\sqrt{3}-2\right)=6\cdot\left(-\sqrt{3}-2\right)\)
a: \(Q=\dfrac{3x+3\sqrt{x}-3-x+1-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x-3\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)
b: Khi x=4+2căn 3 thì \(Q=\dfrac{\sqrt{3}+1-2}{\sqrt{3}+1+2}=\dfrac{-3+2\sqrt{3}}{3}\)
c: Q=3
=>3căn x+6=căn x-2
=>2căn x=-8(loại)
d: Q>1/2
=>Q-1/2>0
=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{1}{2}>0\)
=>2căn x-4-căn x-2>0
=>căn x>6
=>x>36
d: Q nguyên
=>căn x+2-4 chia hết cho căn x+2
=>căn x+2 thuộc Ư(-4)
=>căn x+2 thuộc {2;4}
=>x=0 hoặc x=4(nhận)
Lời giải:
a. \(B=\frac{\sqrt{x}(\sqrt{x}-1)-\sqrt{x}(\sqrt{x}+1)}{(\sqrt{x}+1)(\sqrt{x}-1)}.\frac{\sqrt{x}+1}{2}=\frac{x-\sqrt{x}-x-\sqrt{x}}{(\sqrt{x}+1)(\sqrt{x}-1)}.\frac{\sqrt{x}+1}{2}=\frac{-2\sqrt{x}}{(\sqrt{x}+1)(\sqrt{x}-1)}.\frac{\sqrt{x}+1}{2}=\frac{\sqrt{x}}{1-\sqrt{x}}\)
b. $B=3\Leftrightarrow \frac{\sqrt{x}}{1-\sqrt{x}}=3$
$\Rightarrow \sqrt{x}=3(1-\sqrt{x})$
$\Leftrightarrow 4\sqrt{x}=3\Leftrightarrow x=\frac{9}{16}$ (tm)
c.
Khi $x=3-2\sqrt{2}=(\sqrt{2}-1)^2\Rightarrow \sqrt{x}=\sqrt{2}-1$
Khi đó:
$B=\frac{\sqrt{x}}{1-\sqrt{x}}=\frac{\sqrt{2}-1}{1-(\sqrt{2}-1)}=\frac{\sqrt{2}-1}{2-\sqrt{2}}$
a) \(B=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\left(x\ge0,x\ne1\right)\)
\(=\left(\dfrac{2\sqrt{x}+x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{x+\sqrt{x}+1-\sqrt{x}-2}{x+\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{x-1}{x+\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{x+\sqrt{x}+1}{x-1}=\dfrac{1}{x-1}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne\dfrac{1}{9}\end{matrix}\right.\)
Ta có: \(P=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{5\sqrt{x}}{9x-1}\right):\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+5\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}:\left(\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)
\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}+1+5\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\cdot\dfrac{3\sqrt{x}+1}{3}\)
\(=\dfrac{3x}{3\sqrt{x}-1}\cdot\dfrac{1}{3}\)
\(=\dfrac{x}{3\sqrt{x}-1}\)
b) Ta có: \(9x^2-10x+1=0\)
\(\Leftrightarrow\left(9x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{9}\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)
Thay x=1 vào P, ta được:
\(P=\dfrac{1}{3-1}=\dfrac{1}{2}\)
c) Thay \(x=8-2\sqrt{7}\) vào P, ta được:
\(P=\dfrac{8-2\sqrt{7}}{3\left(\sqrt{7}-1\right)-1}=\dfrac{8-2\sqrt{7}}{3\sqrt{7}-4}\)
\(=\dfrac{-10+16\sqrt{7}}{47}\)
a) Ta có:
\(B=\sqrt{1-6x+9x^2}-3x\)
\(B=\sqrt{\left(1-3x\right)^2}-3x\)
\(B=\left|1-3x\right|-3x\)
Nếu \(x>\frac{1}{3}\) thì \(B=3x-1-3x=-1\)
Nếu \(x\le\frac{1}{3}\) thì \(B=1-3x-3x=1-6x\)
b) Xét ta thấy x = 0,5 > 1/3 nên khi đó: B = -1
Nếu x = 0: \(B=1-6\cdot0=1\)
Nếu x = -0,5: \(B=1-6\cdot\left(-0,5\right)=4\)
c) Ta có: \(B>2\)
\(\Leftrightarrow1-6x>2\)
\(\Leftrightarrow-1>6x\)
\(\Rightarrow x< -\frac{1}{6}\)
a) \(B=\sqrt{1-6x+9x^2}-3x\)
\(=\sqrt{\left(1-3x\right)^2}-3x\)
\(=\left|1-3x\right|-3x\)
Với x ≤ 1/3 => B = 1 - 3x - 3x = 1 - 6x
Với x > 1/3 => B = 3x - 1 - 3x = -1
b) Với x = -0, 5 < 1/3 => B = 1 - 6.(-0,5) = 4
Với x = 0 < 1/3 => B = 1 - 6.0 = 1
Với x = 0, 5 > 1/3 => B = -1
c) Để B > 2
=> | 1 - 3x | - 3x > 2 (*)
Với x ≤ 1/3
(*) ⇔ 1 - 3x - 3x > 2
⇔ -6x > 1
⇔ x < -1/6 ( tm )
Với x > 1/3
(*) ⇔ 3x - 1 - 3x > 2
⇔ -1 > 2 ( vô lí )
Vậy x < -1/6