K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2022

a) Xét tam giác ABC:

+ M là trung điểm của AB (gt).

+ N là trung điểm của AC (gt).

\(\Rightarrow\) MN là đường trung bình.

\(\Rightarrow\) MN // BC (Tính chất đường trung bình).

Xét tứ giác BMNC:

MN // BC (cmt).

\(\Rightarrow\) Tứ giác BMNC là hình thang.

b) Xét tứ giác AIBP:

+ M là trung điểm của AB (gt).

+ M là trung điểm của PI (P là điểm đối xứng của I qua M).

\(\Rightarrow\) Tứ giác AIBP là hình bình hành (dhnb).

Mà \(\widehat{AIB}=90^o\left(AI\perp BC\right).\)

\(\Rightarrow\) Tứ giác AIBP là hình chữ nhật (dhnb).

c) Xét tam giác ABC: MN là đường trung bình (cmt).

\(\Rightarrow\) MN = \(\dfrac{1}{2}\) BC (Tính chất đường trung bình).

Mà BK = KC = \(\dfrac{1}{2}\) BC (K là trung điểm của BC).

\(\Rightarrow\) MN = BK = KC = \(\dfrac{1}{2}\) BC.

Xét tứ giác MNKB:

+ MN = BK (cmt).

+ MN // BK (MN // BC).

\(\Rightarrow\) Tứ giác MNKB là hình bình hành (dhnb).

\(\Rightarrow\) \(\widehat{MNK}=\widehat{MBK}\) (Tính chất hình bình hành).​

Mà \(\widehat{MBK}=\widehat{MIB}\) (Tứ giác AIBP là hình chữ nhật).

\(\Rightarrow\widehat{MNK}=\widehat{MIB}.\)

Lại có: \(\widehat{MIB}=\widehat{IMN}\) (MN // BC).

\(\Rightarrow\widehat{MNK}=\widehat{IMN}.\)

Xét tứ giác MNKI: MN // KI (MN // BC).

\(\Rightarrow\) Tứ giác MNKI là hình thang.

Mà \(\widehat{IMN}=\widehat{MNK}\left(cmt\right).\)

\(\Rightarrow\) Tứ giác MNKI là hình thang cân.

\(\Rightarrow\) \(\widehat{MIN}=\widehat{MKN.}\)

12 tháng 1 2022

giup voi moi nguoi

a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ

nên AMDN là hình chữ nhật

b: Xét tứ giác NKIM có

D là trung điểm của NI

D là trung điểm của KM

Do đó: NKIM là hình bình hành

mà NI vuông góc với KM

nên NKIM là hình thoi

c: Xét ΔABC có DN//AB

nên DN/AB=CN/CA=CD/CB

=>CN=1/2CA
hay N là trung điểm của AC

Xét ΔABC có DM//AC
nên BM/BA=BD/BC=1/2

hay BM=1/2BA
=>M là trung điểm của AB

Ta có: ΔAHB vuông tại H 

mà HM là đường trung tuyến

nên MA=MH

Ta có: ΔAHC vuông tại H

mà HN là đừog trung tuyến

nên HN=AN

Xét ΔMAN và ΔMHN có

MA=MH

AN=HN

MN chung

Do đó: ΔMAN=ΔMHN

Suy ra:góc MHN=90 độ

a: Xét ΔABC có AD/AB=AE/AC

nên DE//BC và DE=1/2BC

=>DE//BF và DE=BF

=>BDEF là hình bình hành

b: Xét tứ giác AICM có

E là trung điểm chung của AC và IM

góc AIC=90 độ

Do đó; AICM là hình chữ nhật

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: \(MN=\dfrac{BC}{2}=10\left(cm\right)\)

21 tháng 12 2017

a)  \(\Delta ABC\) có  MA = MB;  NA = NC

\(\Rightarrow\)MN là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)MN // BC

\(\Rightarrow\)Tứ giác BMNC là hình thang

b)  \(\Delta ABC\)có  NA = NC;  QB = QC

\(\Rightarrow\)NQ // AB;   NQ = 1/2 AB

mà   MA = 1/2 AB

\(\Rightarrow\)NQ = MA

Tứ giác AMQN có   NQ // AM;   NQ = AM

\(\Rightarrow\)AMQN là hình bình hành

21 tháng 12 2017

c)  E là điểm đối xứng của H qua M

\(\Rightarrow\)ME = MH

Tứ giác AHBE  có  MA = MB (gt);  ME = MH (gt)

\(\Rightarrow\)AHBE là hình bình hành

mà  \(\widehat{AHB}\)= 900

\(\Rightarrow\)hình bình hành AHBE  là  hình  chữ nhật

 1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc...
Đọc tiếp

 

1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.

2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.

3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN

4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.

5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3

0

a) Xét ΔABC có 

M là trung điểm của AB(gt)

N là trung điểm của AC(gt)

Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra:MN//BC và \(MN=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)

hay \(BC=2\cdot MN=2\cdot8=16\left(cm\right)\)

b) Xét tứ giác BMNC có MN//BC(cmt)

nên BMNC là hình thang(Định nghĩa hình thang)

Hình thang BMNC có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

nên BMNC là hình thang cân