CMR a.x2+b.x+c là số nguyên với mọi số nguyên x khi và chỉ khi 2a,a+b,c\(\in\)Z
HELP ME!!!!
GIÚP MÌNH VỚI!!!!!!!!
CẢM ƠN RẤT NHIỀU!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $2a=m, a+b=n$ với $m,n$ là số nguyên. Khi đó:
$a=\frac{m}{2}; b=n-\frac{m}{2}$.
Khi đó:
$f(x)=\frac{m}{2}x^2+(n-\frac{m}{2})x+c$ với $m,n,c$ là số nguyên.
$f(x)=\frac{m}{2}(x^2-x)+nx+c=\frac{m}{2}x(x-1)+nx+c$
Với $x$ nguyên thì $x(x-1)$ là tích 2 số nguyên liên tiếp nên:
$x(x-1)\vdots 2$
$\Rightarrow \frac{m}{2}x(x-1)\in\mathbb{Z}$
Mà: $nx\in\mathbb{Z}, c\in\mathbb{Z}$ với $x,m,n,c\in\mathbb{Z}$
$\Rightarrow f(x)\in\mathbb{Z}$
Ta có đpcm.
uses crt;
var a,b,c:longint;
begin
clrscr;
readln(a,b,c);
writeln(a*b*c);
readln;
end.
-Ta chia làm 2 bài:
*C/m: Khi 6a, 2b, a+b+c và d là số nguyên thì đa thức trên có giá trị nguyên với mọi x nguyên.
- 6a nguyên \(\Rightarrow\)a nguyên.
- 2b nguyên \(\Rightarrow\)b nguyên.
- a+b+c nguyên \(\Rightarrow\)c nguyên.
\(\Rightarrow\)đpcm.
*C/m: Khi đa thức trên có giá trị nguyên với mọi x nguyên thì 6a, 2b, a+b+c và d là số nguyên.
\(f\left(0\right)=d\) nguyên.
\(f\left(1\right)=a+b+c+d\) nguyên \(\Rightarrow\) a+b+c nguyên.
\(f\left(2\right)=8a+4b+2c+d\) nguyên \(\Rightarrow8a+4b+2c\) nguyên.
\(\Rightarrow4a+2b+c\) nguyên
\(\Rightarrow4a+2b+c-\left(a+b+c\right)\) nguyên.
\(\Rightarrow3a+b\) nguyên.
\(f\left(3\right)=27a+9b+3c+d\) nguyên \(\Rightarrow27a+9b+3c\) nguyên
\(\Rightarrow9a+3b+c\) nguyên
\(9a+3b+c-\left(a+b+c\right)\) nguyên.
\(\Rightarrow8a+2b\) nguyên \(\Rightarrow4a+b\) nguyên
\(\Rightarrow a,b\) nguyên.
Để cho \(a+b+2\sqrt{ab+c^2}\)là xô nguyên tô thì trươc hêt \(\sqrt{ab+c^2}\)phải là xô nguyên đã.
\(\Rightarrow ab+c^2=d^2\)
\(\Leftrightarrow ab=\left(c+d\right)\left(c-d\right)\)
\(\Rightarrow\)a, b phải cùng tinh chẵn lẻ.
Ta thây rằng a, b cùng tinh chẵn lẻ thì
\(a+b+2\sqrt{ab+c^2}\) chia hêt cho 2
Lại co: \(a+b+2\sqrt{ab+c^2}>2\)
Vậy \(a+b+2\sqrt{ab+c^2}\) không thể là xô nguyên tô được.
Bài trên chỗ \(\left(c+d\right)\left(c-d\right)\)xửa lại thành \(\left(c+d\right)\left(d-c\right)\)lỡ tay bâm nhầm.