cho tam giác ABC vuông tại A ( AB < AC ) . Gọi I là trung điểm BC. Qua I vẽ IM vuông góc AB tại M và IN vuông góc AC tại N.
a): Chứng minh tứ giác AMIN là hình chữ nhật nhật
b)Chứng minh rằng tứ giác NMBI là hình bình hành
c)Cho IM=5cm .Tính độ dài NC
Làm gấp hộ mình câu B , C với , cần gấp lắm mình sẽ tick 3 acc cho bạn
a) Xét tứ giác AMIN có :
\(MI//AN\left(\perp AM\right)\)
\(MA//IN\left(\perp AN\right)\)
\(\Rightarrow\)Tứ giác AMIN là hình bình hành
mà \(\widehat{A}=90^o\)
\(\Rightarrow\)Tứ giác AMIN là hình chữ nhật
b) Ta có : AM // NI (cmt)
\(\Rightarrow MB//NI\left(1\right)\)
Xét \(\Delta ACB\)có :
BI = IC (gt)
AM // NI (cmt)
\(\Rightarrow\)NI là đường trunbg bình của \(\Delta ACB\)
\(\Rightarrow NI=\frac{1}{2}AB\left(2\right)\)
mà tứ giác AMIN là hình chữ nhật
\(\Rightarrow AM=NI\left(3\right)\)
Từ (2) và (3) \(\Rightarrow AM=\frac{1}{2}AB\)
\(\Rightarrow\)M là trung diểm của AB
\(\Rightarrow AM=MB\left(4\right)\)
Từ (2) và (4) \(\Rightarrow BM=NI\left(5\right)\)
Từ (1) và (5) \(\Rightarrow\)tứ giác NMBI là hình bình hành
c) Xét \(\Delta ABC\)có :
BI = IC (gt)
BM = MA (cmt)
\(\Rightarrow\)MI là dường trung bình của \(\Delta ABC\)
\(\Rightarrow MI=\frac{1}{2}AC\left(6\right)\)
Ta có : NI là đường trung binh của \(\Delta ACB\)(cmt)
\(\Rightarrow AN=NC\)
\(\Rightarrow NC=\frac{1}{2}AC\left(7\right)\)
Từ (6) và (7) \(\Rightarrow MI=NC=5\left(cm\right)\)
Vậy NC = 5cm