K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2020

\(D=y^3-4y^2+2y-8-y^3+4y^2-\frac{1}{2}y+2\)

\(=\frac{3}{2}y-6\)

Thay y=-2/3 vào D ta có:

\(\frac{3}{2}.\frac{-1}{3}-6=-1-6=-7\)

Vậy D= -7 tại y=-2/3

22 tháng 10 2020

D = ( y2 + 2 )( y - 4 ) - ( 2y2 + 1 )( 1/2y - 2 )

= y3 - 4y2 + 2y - 8 - ( y3 - 4y2 + 1/2y - 2 )

= y3 - 4y2 + 2y - 8 - y3 + 4y2 - 1/2y + 2

= 3/2y - 6

Thế y = -2/3 ta được

D = 3/2.(-2/3) - 6 = -1 - 6 = -7

2 tháng 6 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Thay x = -1,76; y = 3/25

⇒ P = 1/2

9 tháng 9 2021

\(1,\\ a,A=4x^2\left(-3x^2+1\right)+6x^2\left(2x^2-1\right)+x^2\\ A=-12x^4+4x^2+12x^2-6x^2+x^2=-x^2=-\left(-1\right)^2=-1\\ b,B=x^2\left(-2y^3-2y^2+1\right)-2y^2\left(x^2y+x^2\right)\\ B=-2x^2y^3-2x^2y^2+x^2-2x^2y^3-2x^2y^2\\ B=-4x^2y^3-4x^2y^2+x^2\\ B=-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^3-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^2+\left(0,5\right)^2\\ B=\dfrac{1}{8}-\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{8}\)

9 tháng 9 2021

\(2,\\ a,\Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ b,\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3=8=-2^3\\ \Leftrightarrow x=2\\ c,\Leftrightarrow4x^2\left(4x-2\right)-x^3+8x^2=15\\ \Leftrightarrow16x^3-8x^2-x^3+8x^2=15\\ \Leftrightarrow15x^3=15\\ \Leftrightarrow x^3=1\Leftrightarrow x=1\)

 

8 tháng 9 2023

Bài 1 :

a) \(M=\dfrac{1}{2}x^2y.\left(-4\right)y\)

\(\Rightarrow M=-2x^2y^2\)

Khi \(x=\sqrt[]{2};y=\sqrt[]{3}\)

\(\Rightarrow M=-2.\left(\sqrt[]{2}\right)^2.\left(\sqrt[]{3}\right)^2\)

\(\Rightarrow M=-2.2.3=-12\)

b) \(N=xy.\sqrt[]{5x^2}\)

\(\Rightarrow N=xy.\left|x\right|\sqrt[]{5}\)

\(\Rightarrow\left[{}\begin{matrix}N=xy.x\sqrt[]{5}\left(x\ge0\right)\\N=xy.\left(-x\right)\sqrt[]{5}\left(x< 0\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}N=x^2y\sqrt[]{5}\left(x\ge0\right)\\N=-x^2y\sqrt[]{5}\left(x< 0\right)\end{matrix}\right.\)

Khi \(x=-2< 0;y=\sqrt[]{5}\)

\(\Rightarrow N=-x^2y\sqrt[]{5}=-\left(-2\right)^2.\sqrt[]{5}.\sqrt[]{5}=-4.5=-20\)

2:

Tổng của 4 đơn thức là;

\(A=11x^2y^3+\dfrac{10}{7}x^2y^3-\dfrac{3}{7}x^2y^3-12x^2y^3=0\)

=>Khi x=-6 và y=15 thì A=0

 

17 tháng 10 2019

\(A=\left(\frac{4}{x-y}-\frac{x-y}{y^2}\right).\frac{y^2-xy}{x-3y}+\left(\frac{x}{2}-\frac{x^2-xy}{x-2y}\right):\frac{xy+y^2}{2x-4y}\)

\(=\frac{4y^2-\left(x-y\right)^2}{y^2\left(x-y\right)}.\frac{y^2-xy}{x-3y}+\frac{x\left(x-2y\right)-2\left(x^2-xy\right)}{2\left(x-2y\right)}.\frac{2x-4y}{xy+y^2}\)

\(=\frac{3y^2+2xy-x^2}{y^2\left(x-y\right)}.\frac{y^2-xy}{x-3y}+\frac{-x^2}{2\left(x-2y\right)}.\frac{2x-4y}{xy+y^2}\)

\(=\frac{\left(x+y\right)\left(3y-x\right)}{y^2\left(x-y\right)}.\frac{y\left(y-x\right)}{x-3y}-\frac{x^2}{2\left(x-2y\right)}.\frac{2\left(x-2y\right)}{y\left(x+y\right)}\)

\(=\frac{\left(x+y\right)}{y}-\frac{x^2}{y\left(x+y\right)}\)

\(=\frac{\left(x+y\right)^2-x^2}{y\left(x+y\right)}=\frac{2xy+y^2}{y\left(x+y\right)}=\frac{2x+y}{x+y}\)

Giờ chỉ cần thế x, y vô nữa là xong nhé.

17 tháng 10 2019

\(A=\left(\frac{4}{x-y}-\frac{x-y}{y^2}\right).\frac{y^2-xy}{x-3y}\)\(+\left(\frac{x}{2}-\frac{x^2-xy}{x-2y}\right):\frac{xy+y^2}{2x-4y}\)

\(=\left(\frac{4}{x-y}-\frac{x-y}{y^2}\right).\frac{y\left(y-x\right)}{x-3y}\)\(+\left(\frac{x}{2}-\frac{x\left(x-y\right)}{x-2y}\right):\frac{y\left(x+y\right)}{2\left(x-2y\right)}\)

\(=\frac{4y\left(y-x\right)}{\left(x-y\right)\left(x-3y\right)}-\frac{\left(x-y\right)y\left(y-x\right)}{y^2\left(x-3y\right)}\)\(+\frac{x.2\left(x-2y\right)}{2.y\left(x+y\right)}-\frac{x\left(x-y\right).2\left(x-2y\right)}{\left(x-2y\right).y\left(x+y\right)}\)

\(=\frac{-4y}{x-3y}+\frac{\left(x-y\right)^2}{y\left(x-3y\right)}+\frac{x\left(x-2y\right)}{y\left(x+y\right)}-\frac{2x\left(x-y\right)}{y\left(x+y\right)}\)

\(=\frac{-4y^2+x^2-2xy+y^2}{y\left(x-3y\right)}+\frac{x^2-2xy-2x^2+2xy}{y\left(x+y\right)}\)

\(=\frac{x^2-2xy-3y^2}{y\left(x-3y\right)}+\frac{-x^2}{y\left(x+y\right)}\)

\(=\frac{x^2+xy-3xy-3y^2}{y\left(x-3y\right)}-\frac{x^2}{y\left(x+y\right)}\)

\(=\frac{x\left(x+y\right)-3y\left(x+y\right)}{y\left(x-3y\right)}-\frac{x^2}{y\left(x+y\right)}\)

\(\frac{\left(x+y\right)\left(x-3y\right)}{y\left(x-3y\right)}-\frac{x^2}{y\left(x+y\right)}\)

\(=\frac{x+y}{y}-\frac{x^2}{y\left(x+y\right)}=\frac{\left(x+y\right)^2-x^2}{y\left(x+y\right)}\)

\(=\frac{x^2-2xy+y^2-x^2}{y\left(x+y\right)}=\frac{-2xy+y^2}{y\left(x+y\right)}\)

\(=\frac{y\left(y-2x\right)}{y\left(x+y\right)}=\frac{y-2x}{x+y}\)

Thay \(x=\frac{1}{2};y=\frac{1}{3}\)vào A ta có :

\(A=\frac{\frac{1}{3}-2.\frac{1}{2}}{\frac{1}{2}+\frac{1}{3}}=\frac{\frac{1}{3}-1}{\frac{3}{6}+\frac{2}{6}}=\frac{2}{3}:\frac{5}{6}=\frac{2.6}{3.5}=\frac{4}{5}\)

Vậy \(A=\frac{4}{5}\)tại \(x=\frac{1}{2};y=\frac{1}{3}\)

a: \(N=\left(2x-3y\right)\left(2x+3y\right)=\left(2x\right)^2-\left(3y\right)^2\)

\(=4x^2-9y^2\)

Thay x=1/2 và y=1/3 vào N, ta được:

\(N=4\cdot\left(\dfrac{1}{2}\right)^2-9\left(\dfrac{1}{3}\right)^2\)

\(=4\cdot\dfrac{1}{4}-9\cdot\dfrac{1}{9}\)

=1-1

=0

b: \(N=\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=\left(2x-y\right)\left[\left(2x\right)^2+2x\cdot y+y^2\right]\)

\(=\left(2x\right)^3-y^3=8x^3-y^3\)

Khi x=1 và y=3 thì \(N=8\cdot1^3-3^3=8-27=-19\)

4 tháng 8 2021

B=x2(x+y)-y(x2-y)+2014

   = x3+x2y-x2y+y2+2014

   = x3+y2+2014

   = 13+(-1)2+2014

   = 1+1+2014

   =2016

4 tháng 8 2021

B = x2.x+x2.y-y.x2+y.y+2014            Uy tín:)

  =  x3+x2y-x2y+y2+2014

  =  x3+y2+2014

Thay x=1;y=-1. Ta có:

B = 13+(-1)2+2014

   = 1+1+2014

   = 2016