K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2020

Ta có : \(ax^2+bx+c=0\)có hai nghiệm trái dấu khi và chỉ khi \(\frac{c}{a}< 0\)

Áp dụng vào phương trình \(x^2+x-1=0\)có : \(-\frac{1}{1}< 0\)

=> phương trình \(x^2+x-1=0\)có 2 nghiệm trái dấu ( điều phải chứng minh )

18 tháng 10 2020

Dùng công thức nghiệm tìm được hai nghiệm \(x_1=\frac{-1-\sqrt{5}}{2}< 0\)và \(x_2=\frac{-1+\sqrt{5}}{2}>0\)

Vậy phương trình  x2 + x - 1 = 0 có 2 nghiệm trái dấu

\(D=\sqrt{x_1^8+10x_1+13}+x_1=\left[\sqrt{x_1^8+10x_1+13}+\left(x_1-5\right)\right]+5\)\(=\frac{x_1^8+10x_1+13-x_1^2+10x_1-25}{\sqrt{x_1^8+10x_1+13}-\left(x_1-5\right)}+5\)\(=\frac{x_1^8-x_1^2+20x_1-12}{\sqrt{x_1^8+10x_1+13}-\left(x_1-5\right)}+5=\frac{\left(x_1^2+x_1-1\right)\left(x_1^6-x_1^5+2x_1^4-3x_1^3+5x_1^2-8x_1+12\right)}{\sqrt{x_1^8+10x_1+13}-\left(x_1-5\right)}+5=5\)(Do x1 là nghiệm của phương trình x2 + x - 1 = 0 nên \(x_1^2+x_1-1=0\))

28 tháng 8 2020

theo đầu bài ta có

x1x2<0

Ta sử dụng hệ thức VIet

x1x2=\(\frac{c}{a}\)=-1

=> Pt có 2 nghiệm trái dấu

Phần còn lại tính nghiệm ra rồi thay vao máy tính tính

20 tháng 5 2023

1) \(\Delta'=1-m>0\forall m< 1\)

Vậy phương trình đã cho luôn có hai nghiệm phân biệt

2) Do a = 1; c = -1 nên a và c trái dấu

Do đó phương trình luôn có hai nghiệm phân biệt

Theo Viét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-1\end{matrix}\right.\)

\(\Rightarrow P=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_2+x_1}{x_1x_2}=\dfrac{-2}{-1}=2\)

13 tháng 1 2023

`1)` Ptr có: `\Delta=3^2-4.5.(-1)=29 > 0 =>`Ptr có `2` nghiệm phân biệt

 `=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=-3/5),(x_1.x_2=c/a=-1/5):}`

Có: `A=(3x_1+2x_2)(3x_2+x_1)`

     `A=9x_1x_2+3x_1 ^2+6x_2 ^2+2x_1x_2`

    `A=8x_1x_2+3(x_1+x_2)^2=8.(-1/5)+3.(-3/5)^2=-13/25`

Vậy `A=-13/25`

____________________________________________________

`2)` Ptr có: `\Delta'=(-1)^2-7.(-3)=22 > 0=>` Ptr có `2` nghiệm pb

 `=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2/7),(x_1.x_2=c/a=-3/7):}`

Có: `M=[7x_1 ^2-2x_1]/3+3/[7x_2 ^2-2x_2]`

     `M=[(7x_1 ^2-2x_1)(7x_2 ^2-2x_2)+9]/[3(7x_2 ^2-2x_2)]`

    `M=[49(x_1x_2)^2-14x_1 ^2 x_2-14x_1 x_2 ^2+4x_1x_2+9]/[3(7x_2 ^2-2x_2)]`

   `M=[49.(-3/7)^2-14.(-3/7)(2/7)+4.(-3/7)+9]/[3x_2(7x_2-2)]`

   `M=6/[x_2(7x_2-2)]`   `(1)`

Có: `x_1+x_2=2/7=>x_1=2/7-x_2`

 Thay vào `x_1.x_2=-3/7 =>(2/7-x_2)x_2=-3/7`

      `<=>-x_2 ^2+2/7 x_2+3/7=0<=>x_2=[1+-\sqrt{22}]/7`

`@x_2=[1+\sqrt{22}]/7=>M=6/[[1+\sqrt{22}]/7(7 .[1+\sqrt{22}]/2-2)]=2`

`@x_2=[1-\sqrt{22}]/7=>M=6/[[1-\sqrt{22}]/7(7 .[1-\sqrt{22}]/2-2)]=2`

Vậy `M=2`

a: Khi m=1 thì pt sẽ là: x^2+4x-3=0

=>x=-2+căn 7 hoặc x=-2-căn 7

b: Δ=(2m-6)^2-4(m-4)

=4m^2-24m+36-4m+16

=4m^2-28m+52=(2m-7)^2+3>0

=>PT luôn có hai nghiệm pb

c: PT có hai nghiệm trái dấu

=>m-4<0

=>m<4

13 tháng 1 2023

\(x^2-11x+m-2=0\left(1\right)\)

Để phương trình (1) có 2 nghiệm phân biệt thì:

\(\Delta>0\Rightarrow\left(-11\right)^2-4.1.\left(m-2\right)>0\)

\(\Leftrightarrow121-4m+8>0\)

\(\Leftrightarrow m< \dfrac{129}{4}\)

Theo hệ thức Vi-et ta có:

\(\left\{{}\begin{matrix}x_1+x_2=11\left(1'\right)\\x_1x_2=m-2\end{matrix}\right.\).

Ta có: \(\sqrt{x^2_1-10x_1+m-1}=5-\sqrt{x_2+1}\left(2\right)\)

Đk: \(\left\{{}\begin{matrix}x_1^2-10x_1+m-1\ge0\\-1\le x_2\le24\end{matrix}\right.\)

\(\left(2\right)\Rightarrow x^2_1-10x_1+m-1=25-10\sqrt{x_2+1}+x_2+1\)

\(\Leftrightarrow x_1^2-10x_1+\left(m-2\right)-25+10\sqrt{11-x_1+1}-x_2=0\)

\(\Rightarrow x_1^2-\left(x_1+x_2\right)-9x_1+x_1x_2-25+10\sqrt{12-x_1}=0\)

\(\Rightarrow x_1\left(x_1+x_2\right)-11-9x_1-25+10\sqrt{12-x_1}=0\)

\(\Rightarrow11x_1-9x_1-36+10\sqrt{12-x_1}=0\)

\(\Leftrightarrow2x_1+10\sqrt{12-x_1}-36=0\)

\(\Leftrightarrow x_1+5\sqrt{12-x_1}-18=0\)

\(\Leftrightarrow18-x_1=5\sqrt{12-x_1}\left(x_1\le12\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}18-x_1\ge0\\\left(18-x_1\right)^2=25\left(12-x_1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}18-x_1\ge0\\324-36x_1+x_1^2=300-25x_1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1\le18\\x_1^2-11x_1+24=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1\le18\\\left[{}\begin{matrix}x=3\\x=8\end{matrix}\right.\left(nhận\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=3\\x_1=8\end{matrix}\right.\left(nhận\right)\)

Thay \(x_1=3\) vào (1') ta được:

\(3+x_2=11\Rightarrow x_2=8\left(nhận\right)\)

\(\Rightarrow m=x_1x_2+2=3.8+2=26\left(thỏa\Delta>0\right)\)

Thay \(x_1=8\) vào (1') ta được:'

\(8+x_2=11\Rightarrow x_2=3\left(nhận\right)\)

\(\Rightarrow m=x_1x_2+2=8.3+2=26\left(thỏa\Delta>0\right)\)

Vậy giá trị m cần tìm là 26.

 

 

22 tháng 5 2017

giảm bậc bạn

29 tháng 5 2017

bạn giúp mình được k

a:Δ=(2m-2)^2-4(-m-3)

=4m^2-8m+4+4m+12

=4m^2-4m+16

=(2m-1)^2+15>=15>0

=>Phương trình luôn có hai nghiệm phân biệt

b: Để phương trình có hai nghiệm trái dấu thì -m-3<0

=>m+3>0

=>m>-3

c: Để phương trình có hai nghiệm âm thì:

2m-2<0 và -m-3>0

=>m<1 và m<-3

=>m<-3

d: x1^2+x2^2=(x1+x2)^2-2x1x2

=(2m-2)^2-2(-m-3)

=4m^2-8m+4+2m+6

=4m^2-6m+10

=4(m^2-3/2m+5/2)

=4(m^2-2*m*3/4+9/16+31/16)

=4(m-3/4)^2+31/4>0 với mọi m