K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2020

\(A=x^3+y^3-2xy=\left(x+y\right)\left(x^2-xy+y^2\right)-2xy=2x^2-4xy-2y^2\)

\(=2\left(x-y\right)^2\ge0.\text{ Dấu bằng: }x=y=1\)

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

29 tháng 8 2018

1) ta có : \(x^2+5y^2-4xy+2y=3\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=2\)

\(\Leftrightarrow\left(x-2y\right)^2=2-\left(y+1\right)^2\ge0\) \(\Leftrightarrow2\ge\left(y+1\right)^2\Leftrightarrow-\sqrt{2}\le y+1\le\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}-1\le y\le\sqrt{2}-1\)

ta lại có : \(\left(y+1\right)^2=2-\left(x-2y\right)^2\ge0\)

\(\Leftrightarrow2\ge\left(x-2y\right)^2\Leftrightarrow-\sqrt{2}\le x-2y\le\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}+2y\le x\le\sqrt{2}+2y\Leftrightarrow-2-3\sqrt{2}\le x\le-2+3\sqrt{2}\)

vậy \(x_{max}=-2+3\sqrt{2}\)

dâu "=" xảy ra khi \(y=\sqrt{2}-1\)

29 tháng 8 2018

câu 3 : ta có : \(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Leftrightarrow y^2=-\left(x+y\right)^2-7\left(x+y\right)-10\ge0\)

\(\Leftrightarrow-5\le x+y\le-2\)

\(\Rightarrow S_{max}=-2\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-2\end{matrix}\right.\Leftrightarrow y=0;x=-2\)

\(S_{min}=-5\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-5\end{matrix}\right.\Leftrightarrow y=0;x=-5\)

bài này có trong đề thi hsg trường mk :)

5 tháng 9 2016

\(x+y=2\Rightarrow x^2+2xy+y^2=4\ge2xy+2xy=4xy\) ( vì \(x^2+y^2\ge2xy\) )

\(\Rightarrow xy\le1\)

\(A=x^3+y^3+2xy=\left(x+y\right)\left\{\left(x+y\right)^2-3xy\right\}+2xy\)

    \(=2\left(4-3xy\right)+2xy=-4xy+8\ge-4+8=-4\) ( vì \(xy\le1\) )

Vậy \(A_{MIN}=4\) Khi  \(x=y=1\)

5 tháng 9 2016

\(A=x^3+y^3+2xy=\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\)

Thay \(x+y=2\)(giả thiết), suy ra:

A=\(2\left(x^2-xy+y^2\right)+2xy\)\(=2\left(x^2+y^2\right)\)

Sử dụng điều kiện \(x+y=2\)như vậy: \(\left(x+y\right)^2=4\Leftrightarrow x^2+2xy+y^2=4\)\(\left(1\right)\)

Mà \(\left(x-y\right)^2\ge0\Leftrightarrow x^2-2xy+y^2\ge0\)\(\left(2\right)\)

Cộng (1) và (2), ta có: \(2\left(x^2+y^2\right)\ge4\)

Vậy Amin = 4 \(\Leftrightarrow x^2+y^2=2\Leftrightarrow x=y=1\)

5 tháng 9 2016

x3+y3+2xy=(x+y)(x2-xy+y2)+2xy=2(x2-xy+y2)+2xy=2x2-2xy+2y2+2xy=2x2+2y2

Ta có: 2x2>=0(với mọi x)

          2y2>=0(với mọi y)

=>2x2+2y2>=0(với mọi x,y)

hay x3+y3+2xy >=0(với mọi x,y)

Do đó, GTNN của x3+y3+2xy là 0

24 tháng 7 2018

A= \(x^3+y^3+2xy=\left(x+y\right)\left(x^2+y^2-xy\right)+2xy\)

= \(2\left(x^2+y^2-xy\right)+2xy=2x^2+2y^2-2xy+2xy\)

= \(\left(1^2+1^2\right)\left(x^2+y^2\right)\) \(\ge\left(x+y\right)^2\) = 22 = 4(Ap dụng BĐT bunhiacopsky), dấu "=" xảy ra khi \(\dfrac{1}{x}=\dfrac{1}{y}\Leftrightarrow x=y=1\)

Vậy MinA = 4 <=> x = y =1.

NV
19 tháng 12 2020

\(A=\dfrac{-\left(x^2+2xy+y^2\right)+4x^2+4xy+y^2}{x^2+2xy+y^2}=-1+\left(\dfrac{2x+y}{x+y}\right)^2\ge-1\)

\(A_{min}=-1\) khi \(2x+y=0\)

26 tháng 7 2016

bài này dễ ẹt ak 

nhưng giúp mình bài này đi 

chotam giac abc . co canh bc=12cm, duong cao ah=8cm

a> tinh s tam giac abc

b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )

c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame

2 tháng 5 2023

Ta có:

x^3 + y^3 + x^2 + y^2 = 2xy(x+y)

Đặt S = x + y, P = xy, ta có:

x^3 + y^3 + x^2 + y^2 = (x+y)(x^2 + y^2) = (x+y)^3 - 3xy(x+y) = S^3 - 3PS

Vậy ta có:

S^3 - 3PS + S^2 - 2P = 0

S^3 + S^2 - 3PS - 2P = S(S^2 + S - 3P) - 2P = 0

Do đó, ta có:

S^2 + S - 3P = 0

Sử dụng công thức Viết để tính nghiệm của phương trình bậc hai này, ta được:

S = (-1 + sqrt(1 + 12P))/2 hoặc S = (-1 - sqrt(1 + 12P))/2

Vì x và y là các số thực dương, nên ta chỉ quan tâm đến nghiệm dương của S, tức là:

S = (-1 + sqrt(1 + 12P))/2

Tiếp theo, ta có:

K = x^3 + y^3 + 3/(x^2 + y^2) + 2/((x+y)^2)

= S^3 - 3PS + 3/(S^2 - 2P) + 2/(S^2)

= S^3 - 3PS + 3S^2/(S^2 - 2P) + 2/(S^2)

= S^3 - 3PS + 3S^2/(S^2 - 2P) + 2S^2/(S^2 * (S^2 - 2P))

= S^3 - 3PS + (5S^4 - 6PS^2)/(S^2 * (S^2 - 2P))

= S^3 - 3PS + (5S^4 - 6PS^2)/(S^2 * (S^2 + 1 - 2xy))

= S^3 - 3PS + (5S^4 - 6PS^2)/((S^2 + 1)^2 - 2(S^2-1)P)

= S^3 - 3PS + (5S^4 - 6PS^2)/((S^2 + 1)^2 - 2(S^2-1)(S^3 - 3PS))

= S^3 - 3PS + (5S^4 - 6PS^2)/(-2S^5 + 10S^3 - 2PS^2 + 2P)

= S^3 - 3PS + (5S^4 - 6PS^2)/(2S^5 - 10S^3 + 2PS^2 - 2P)

= S^3 - 3PS + (5S^2 - 6P)/(2S^3 - 10S +