phân tích đa thức thành nhân tử
X^3 + x^2 - 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2\left(x-3\right)-4x+12=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
=x²(x-3)-4x+3.4
=x²(x-3)-4(x+3)
=x²(x-3)+4(x-3)
=(x-3)(x²+4)
=(x-3)(x²+2²)
=(x-3)(x-2)(x+2)
\(x^3-2xy-x^2y+2y^2=\left(x^3-x^2y\right)-\left(2xy-2y^2\right)\)
\(=x^2\left(x-y\right)-2y\left(x-y\right)=\left(x^2-2y\right)\left(x-y\right)\)
\(=x^2\left(x-y\right)-2y\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-2y\right)\)
\(=x^2\left(x+y\right)-\left(x+y\right)=\left(x^2-1\right)\left(x+y\right)=\left(x-1\right)\left(x+1\right)\left(x+y\right)\)
Bài 2:
Sửa đề: \(x^3-3x^2-10x=0\)
\(\Leftrightarrow x\left(x^2-3x-10\right)=0\)
\(\Leftrightarrow x\left(x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-2\end{matrix}\right.\)
\(x^3-4x^2+8x-8=x^2\left(x-2\right)-2x\left(x-2\right)+4\left(x-2\right)=\left(x-2\right)\left(x^2-2x+4\right)\)
\(x^3-4x^2+8x-8\)
\(=\left(x-2\right)\left(x^2+2x+4\right)-4x\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-2x+4\right)\)
\(=x^2\left(x+3\right)-4\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-4\right)\)
\(=\left(x+3\right)\left(x-2\right)\left(x+2\right)\)
\(x^4+x^3+2x^2+x+1=\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\\ =x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2+1\right)\left(x^2+x+1\right)\)
Dễ thấy \(x^2+1>0\); \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) nên ta không thể phân tích thêm được nữa.
Vậy \(x^4+x^3+2x^2+x+1=\left(x^2+1\right)\left(x^2+x+1\right)\).
\(x^5+x+1\)
\(=x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
\(x-y-\sqrt{x}-\sqrt{y}\\ =x-y-\left(\sqrt{x}+\sqrt{y}\right)\\ =\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)-\left(\sqrt{x}+\sqrt{y}\right)\\ =\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}-1\right)\)
=(x-y)-(căn x+căn y)
=(căn x-căn y)(căn x+căn y)-(căn x+căn y)
=(căn x+căn y)(căn x-căn y-1)