K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2021

\(x^5+x+1\)

\(=x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

 

3 tháng 8 2015

Bài 1 :

\(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)

Bài 2 :

 \(x^8+x^7+1=x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1-x^6-x^5-x^4-x^3-x^2-x\)

\(=x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+x^2+x+1-x^4\left(x^2+x+1\right)-x\left(x^2+x+1\right)\)

=\(\left(x^2+x+1\right)\left(x^6+x^3+1-x^4-x\right)\)

Tick đúng nha 

1 tháng 8 2021

X^2-6+8

17 tháng 8 2020

a) \(x^5-x^4-1\)

\(=\left(x^5+x^2\right)-\left(x^4+x\right)-\left(x^2-x+1\right)\)

\(=x^2\left(x^3+1\right)-x\left(x^3+1\right)-\left(x^2-x+1\right)\)

\(=x^2\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)\left(x^2-x+1\right)-\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^3+x^2-x^2-x-1\right)\)

\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)

17 tháng 8 2020

b) \(x^8+x^7+1\)

\(=\left(x^8-x^2\right)+\left(x^7-x\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x^6-1\right)+x\left(x^6-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x^3-1\right)\left(x^3+1\right)+x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+x\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[\left(x^3-x^2\right)\left(x^3+1\right)+\left(x^2-x\right)\left(x^3+1\right)+1\right]\)

\(=\left(x^2+x+1\right)\left[\left(x^3-x\right)\left(x^3+1\right)+1\right]\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

22 tháng 11 2017

x8+x7+1= x8+x7+x6-x6-x5-x4+x5+x4+x3-x3-x2-x+x2+x+1

=(x8+x7+x6)-(x6+x5+x4)+(x5+x4+x3)-(x3+x2+x)+(x2+x+1)

= x6(x2+x+1)-x4(x2+x+1)+x3(x2+x+1)-x(x2+x+1)+( x2+x+1)

=(x2+x+1)(x6-x4+x3-x+1)

Câu b, c lm tương tự

23 tháng 11 2017

x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)

k mk nha

23 tháng 11 2017

bạn ơi bạn chưa bớt 2x^2 kìa

23 tháng 11 2017

x5-x4-1=x5-x3-x2-x4+x2+x+x3-x-1

=x2.(x3-x-1)-x.(x3-x-1)+(x3-x-1)

=(x3-x-1)(x2-x+1)

23 tháng 11 2017

x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)

k mk nha

27 tháng 7 2017

1 ) \(x^5+x+1\)

\(=\left(x^5-x^2\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

b ) \(x^8+x^4+1\)

\(=\left(x^8+2x^4+1\right)-x^4\)

\(=\left(x^4+1\right)^2-\left(x^2\right)^2\)

\(=\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)

28 tháng 7 2017

Cảm ơn bạn

28 tháng 1 2019

\(A=\left(x-1\right)\left(x-2\right)\left(x+7\right)\left(x+8\right)+8\)

\(A=\left[\left(x-1\right)\left(x+7\right)\right]\left[\left(x-2\right)\left(x+8\right)\right]+8\)

\(A=\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8\)

Đặt \(q=x^2+6x-7\)ta có :

\(A=q\left(q-9\right)+8\)

\(A=q^2-9q+8\)

\(A=q^2-q-8q+8\)

\(A=q\left(q-1\right)-8\left(q-1\right)\)

\(A=\left(q-1\right)\left(q-8\right)\)

Thay \(q=x^2+6x-7\)vào A ta được :

\(A=\left(x^2+6x-7-1\right)\left(x^2+6x-7-8\right)\)

\(A=\left(x^2+6x-8\right)\left(x^2+6x-15\right)\)

24 tháng 12 2016

bạn xem lại xem thử có sai đề bài ko

 

24 tháng 12 2016

đề sai nha bạn

mình sửa đề cho:

\(A=\left(x+1\right)\left(x+2\right)\left(x+7\right)\left(x+8\right)+8\)

\(A=\left(x+1\right)\left(x+8\right)\left(x+2\right)\left(x+7\right)+8\)

\(A=\left(x^2+9x+8\right)\left(x^2+9x+14\right)+8\)

Đặt \(x^2+9x+8=a\)

\(\Rightarrow A=a\left(a+6\right)+8=a^2+6a+8=\left(a+2\right)\left(a+4\right)\)

\(\Rightarrow A=\left(x^2+9x+8+2\right)\left(x^2+9x+8+4\right)=\left(x^2+9x+10\right)\left(x^2+9x+12\right)\)

3 tháng 9 2018

\(x^{16}+x^8+1\)

\(=x^{16}+2x^8+1-x^8\)

\(=\left(x^8+1\right)^2-x^8\)

\(=\left(x^8-x^4+1\right)\left(x^8+x^4+1\right)\)

\(=\left(x^8-x^4+1\right)\left(x^8+2x^4+1-x^4\right)\)

\(=\left(x^8-x^4+1\right)\left[\left(x^4+1\right)^2-x^4\right]\)

\(=\left(x^8-x^4+1\right)\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)

\(=\left(x^8-x^4+1\right)\left(x^4-x^2+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)