K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 10 2020

Cách khác:

Áp dụng BĐT Cô-si cho các số dương ta có:
$\frac{x^2}{y+z}+\frac{y+z}{4}\geq 2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=x$

$\frac{y^2}{x+z}+\frac{x+z}{4}\geq y$

$\frac{z^2}{x+y}+\frac{x+y}{4}\geq z$

Cộng theo vế và rút gọn có:

$P+\frac{x+y+z}{2}\geq x+y+z$

$\Leftrightarrow P\geq \frac{x+y+z}{2}=1$

Vậy $P_{\min}=1$

AH
Akai Haruma
Giáo viên
16 tháng 10 2020

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\geq \frac{(x+y+z)^2}{y+z+z+x+x+y}=\frac{x+y+z}{2}=\frac{2}{2}=1\)

Vậy $P_{\min}=1$
Dấu "=" xảy ra khi $x=y=z=\frac{2}{3}$

12 tháng 8 2016

a, Từ x+y=1

=>x=1-y

Ta có: \(x^3+y^3=\left(1-y\right)^3+y^3=1-3y+3y^2-y^3+y^3\)


\(=3y^2-3y+1=3\left(y^2-y+\frac{1}{3}\right)=3\left(y^2-2.y.\frac{1}{2}+\frac{1}{4}+\frac{1}{12}\right)\)

\(=3\left[\left(y-\frac{1}{2}\right)^2+\frac{1}{12}\right]=3\left(y-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\) với mọi y

=>GTNN của x3+y3 là 1/4

Dấu "=" xảy ra \(< =>\left(y-\frac{1}{2}\right)^2=0< =>y=\frac{1}{2}< =>x=y=\frac{1}{2}\) (vì x=1-y)

Vậy .......................................

b) Ta có: \(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{y+x}\)

\(=\left(\frac{x^2}{y+z}+x\right)+\left(\frac{y^2}{z+x}+y\right)+\left(\frac{z^2}{y+z}+z\right)-\left(x+y+z\right)\)

\(=\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{y+z}-\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}-1\right)\)

Đặt \(A=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}\)

\(A=\left(\frac{x}{y+z}+1\right)+\left(\frac{y}{z+x}+1\right)+\left(\frac{z}{y+x}+1\right)-3\)

\(=\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{y+x}-3\)

\(=\left(x+y+z\right)\left(\frac{1}{y+x}+\frac{1}{y+z}+\frac{1}{z+x}\right)-3\)

\(=\frac{1}{2}\left[\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\right]\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)-3\ge\frac{9}{2}-3=\frac{3}{2}\)

(phần này nhân phá ngoặc rồi dùng biến đổi tương đương)

\(=>P=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}-1\right)\ge2\left(\frac{3}{2}-1\right)=1\)

=>minP=1

Dấu "=" xảy ra <=>x=y=z

Vậy.....................

NV
19 tháng 6 2019

Ta có đánh giá: \(\frac{1}{x^2+x}\ge\frac{5-3x}{4}\) \(\forall x>0\)

Thật vậy, BĐT tương đương:

\(\Leftrightarrow4\ge\left(x^2+x\right)\left(5-3x\right)\)

\(\Leftrightarrow3x^3-2x^2-5x+4\ge0\)

\(\Leftrightarrow\left(x-1\right)^2\left(3x+4\right)\ge0\) (luôn đúng \(\forall x>0\))

Tương tự ta có: \(\frac{1}{y^2+y}\ge\frac{5-3y}{4}\) ; \(\frac{1}{z^2+z}\ge\frac{5-3z}{4}\)

Cộng vế với vế: \(P\ge\frac{15-3\left(x+y+z\right)}{4}=\frac{15-9}{4}=\frac{3}{2}\)

\(P_{min}=\frac{3}{2}\) khi \(x=y=z=1\)

16 tháng 8 2019

Tham khảo tại đây: Câu hỏi của dbrby - Toán lớp 10 | Học trực tuyến

12 tháng 11 2019

\(P=\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\)

\(P=\frac{x^2}{xy+xz}+\frac{y^2}{xy+yz}+\frac{z^2}{xz+yz}\)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức 

\(\Rightarrow\frac{x^2}{xy+xz}+\frac{y^2}{xy+yz}+\frac{z^2}{xz+yz}\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}\left(1\right)\)

Theo hệ quả của bất đẳng thức Cauchy 

\(\Rightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)

\(\Rightarrow\frac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}\ge\frac{3\left(xy+yz+xz\right)}{2\left(xy+yz+xz\right)}=\frac{3}{2}\)

Từ (1) và (2) 

\(\Rightarrow\frac{x^2}{xy+xz}+\frac{y^2}{xy+zy}+\frac{z^2}{xz+yz}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\ge\frac{3}{2}\)

\(\Leftrightarrow P\ge\frac{3}{2}\)

Vậy \(P_{min}=\frac{3}{2}\)

Dấu " = " xảy ra khi x = y= z 

12 tháng 11 2019

Áp dụng BĐT Netbitt ta có Vì x,y,z >0 nên 

\(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\ge\frac{3}{2}\)

Dấu ''='' xảy ra khi x = y = z > 0