K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\).... \(+\frac{1}{\left(2n\right)^2}\)\(\frac{1}{2^2}\). ( \(\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{n^2}\)) < \(\frac{1}{2^2}\)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).\left(n\right)}\)) = \(\frac{1}{2^2}\)\(1-\frac{1}{n}\)) < \(\frac{1}{2^2}\).1 = \(\frac{1}{4}\)

\(\Rightarrow\)\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)\(\frac{1}{4}\)

3 tháng 4 2020

mình ko hiểu lắm

8 tháng 7 2016

Đặt \(A=\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)

\(=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)

Có:

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(...\)

\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{n}< 1\)

\(\Rightarrow A< \frac{1}{2^2}.1=\frac{1}{4}\)

\(\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{n^2}<\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{\left(n-2\right)n}=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{\left(n-2\right)n}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{n-2}-\frac{1}{n}\right)=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{n}\right)<\frac{1}{2}.\frac{1}{2}=\frac{1}{4}\)

\(\Rightarrowđpcm\)

2 tháng 4 2017

trên là 2n ở dưới lại là n

26 tháng 2 2018

Ta có : 

\(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)

\(A=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \frac{1}{2^2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\right)\)

\(A< \frac{1}{4}\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)=\frac{1}{4}\left(1-\frac{1}{n}\right)\)

\(A< \frac{1}{4}-\frac{1}{4n}\)

Lại có \(n>0\) nên \(\frac{1}{4n}>0\)

\(\Rightarrow\)\(\frac{1}{4}-\frac{1}{4n}< \frac{1}{4}\)

Vậy \(A< \frac{1}{4}\)

8 tháng 4 2017

bài này tui bít làm nhưng dài lắm

8 tháng 4 2017

Cố gắng làm hộ mình với !

22 tháng 3 2015

Ta có:

\(M=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)

\(=\frac{1}{2^2.2^2}+\frac{1}{2^2.3^2}+\frac{1}{2^2.4^2}+...+\frac{1}{2^2.n^2}\)

\(=\frac{1}{2^2}.\frac{1}{2^2}+\frac{1}{2^2}.\frac{1}{3^2}+\frac{1}{2^2}.\frac{1}{4^2}+...+\frac{1}{2^2}.\frac{1}{n^2}\)

\(=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)

\(=\frac{1}{4}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)

Coi \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)

\(=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{n.n}\)

Vì: \(\frac{1}{2.2}<\frac{1}{1.2}\)

\(\frac{1}{3.3}<\frac{1}{2.3}\)

\(\frac{1}{4.4}<\frac{1}{3.4}\)

\(...\)

\(\frac{1}{n.n}<\frac{1}{\left(n-1\right).n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}\)

\(\Rightarrow A<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(\Rightarrow A<1-\frac{1}{n}\)

Mà \(1-\frac{1}{n}<1\Rightarrow A<1\)

Vì \(A<1\) nên \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}<1\)

\(\Rightarrow\frac{1}{4}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)<\frac{1}{4}\)

\(\Rightarrow M<\frac{1}{4}\)

9 tháng 5 2017

kho qua minh moi lop 5

12 tháng 3 2017

a. Ta có: \(\frac{1}{2^2}\)\(\frac{1}{1.3}\)

\(\frac{1}{4^2}\)< 1/(3.5)

1/(6^2) <1/(5.7)

...

1/(2n)^2 < 1/(2n-1)(2n+1)

=> 1/2^2 +1/4^2 + 1/6^2 +...+1/(2n)^2 < 1/(1.3) +...+1/(2n-1)(2n+1)

=> 2(1/2^2 +1/4^2 + 1/6^2 +...+1/(2n)^2) < (1/1 - 1/3 +1/3 - 1/5 + 1/5 - 1/7 +...+ 1/(2n-1) - 1/(2n+1)

=>2(1/2^2 +1/4^2 + 1/6^2 +...+1/(2n)^2) < 1 - 1/(2n+1) = 2n/(2n+1)

=> 1/2^2 +1/4^2 + 1/6^2 +...+1/(2n)^2 < 2n/(2n+1) . 1/2

Vì 2n/2n+1 < 1 =>  2n/(2n+1) . 1/2 < 1/2

=> 1/2^2 +1/4^2 + 1/6^2 +...+1/(2n)^2 <1/2

 Câu b tương tự

26 tháng 9 2024

a; A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\) + ... + \(\dfrac{1}{\left(2n\right)^2}\) 

A = \(\dfrac{1}{2^2}\).(\(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{n^2}\)

A = \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ... + \(\dfrac{1}{n.n}\))

Vì \(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)\(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\); ...; \(\dfrac{1}{n.n}\) < \(\dfrac{1}{\left(n-1\right)n}\)

nên A < \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{\left(n-1\right)n}\))

\(\dfrac{1}{4.}\)(1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{n-1}\) - \(\dfrac{1}{n}\))

\(\dfrac{1}{4}\).(1 + 1 - \(\dfrac{1}{n}\))

\(\dfrac{1}{4}\).(2 - \(\dfrac{1}{n}\))

\(\dfrac{1}{2}\) - \(\dfrac{1}{4n}\) < \(\dfrac{1}{2}\) (đpcm)

 

19 tháng 3 2017

bn đâu có phải hotgirl đâu

19 tháng 3 2017

Ta có:

\(\frac{1}{4^2}=\frac{1}{4.4}< \frac{1}{3.4}\)

\(\frac{1}{6^2}=\frac{1}{6.6}< \frac{1}{5.6}\)

\(\frac{1}{8^2}=\frac{1}{8.8}< \frac{1}{7.8}\)

\(...\)

\(\frac{1}{\left(2n\right)^2}=\frac{1}{2n.2n}< \frac{1}{1n.2n}\)

Vậy \(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)\(< \)\(\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+...+\frac{1}{1n.2n}\)

\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)\(< \)\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{1n}-\frac{1}{2n}\)

\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)\(< \)\(\frac{1}{3}+\left(\frac{-1}{4}+\frac{1}{4}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+...-\frac{1}{2n}\)

\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)\(< \)\(\frac{1}{3}-\frac{1}{2n}\)