K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2018

a) Có xy // BC (có hai góc so le trong bằng nhau), mà d // BC nên theo tiên đề Ơ-clit  suy ra xy trùng với BC.

b) xy có thể trùng với d hoặc không ( xy trùng với d khi  Δ A B C A B C ^   =   A C B ^ )

10 tháng 1 2017

+ Ta có AB vuông góc với AC và CD vuông góc với AC => AB//CD (cùng vuông góc với AC) (1)

+ Xét tg ABC và tg ACE có

BC=AE

AC chung

BC//AE => ^ACB=^CAE (góc so le trong)

=> tg ABC = tg ACE => ^BAC=^ACE=90 => CE//AB (có 2 góc so le trong bằng nhau) (2)

Từ (1) và (2) => CD trùng CE (qua 1 điểm (điểm C) chỉ dựng được duy nhất 1 đường thẳng // với 1 đường thẳng khác)

=> D; C; E thẳng hàng

15 tháng 5 2016

bạn vẽ hình ra đi

15 tháng 5 2016

Hình đâu bạn?

19 tháng 9 2018

a/ Xét tg vuông AOH và tg vuông IOK có

\(OI\perp AH;KI\perp AO\Rightarrow\widehat{KIO}=\widehat{HAO}\)

\(\Rightarrow\Delta AOH\) đồng dạng với \(\Delta IOK\)(Hai tg vuông có hai góc nhọn tương ứng bằng nhau) (1)

b/

Từ (1) \(\Rightarrow\frac{OK}{OH}=\frac{OI}{OA}\Rightarrow OH.OI=OK.OA\)

Ta có \(OA\perp BC\)(Hai tiếp tuyến xuất phát từ 1 điểm ngoài đường tròn thì đường thẳng nối điểm đó với tâm vuông góc và chia đôi dây cung tạo bởi hai tiếp điểm)

Xét tg vuông ABO có \(OB^2=OK.OA=3\) không đổi

\(\Rightarrow OH.OI\)không đổi mà OH không đổi => OI không đổi

Mà H; O cố định => I cố định => Khi A chay trên xy thì BC luôn đi qua điểm I cố định

19 tháng 11 2018

bạn ơi ko có hingf ak

10 tháng 3 2019

ta có hình vẽ :

y x O A B C D

a, Có 6 tam giác đỉnh O là OAB , OAC , OAD , OBC , OBD , OCD

Ta nhận thấy trên đường thẳng xy có bao nhiêu đoạn thẳng thì khi kết hợp với đỉnh O ta được bấy nhiêu tam giác

b, Nếu trên đường thẳng xy có n điểm A1 , A2 , ..., An thì số đoạn thẳng có trên đường thẳng xy là :

\(\frac{n\left(n-1\right)}{2}\)

Do đó số tam giác đỉnh O có hai đỉnh còn lại là 2 trong n điểm A1 , A2 ,..., An là \(\frac{n\left(n-1\right)}{2}\) ( tam giác ).