1 . tìm các tỉ số lượng giác biết :
\(a)sin\alpha=0,3\)
\(b)cos\alpha=0,4\)
\(c)tan\alpha=5\)
\(d)cot\alpha=2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(\begin{array}{l}{\sin ^4}\alpha - {\cos ^4}\alpha = 1 - 2{\cos ^2}\alpha \\ \Leftrightarrow \left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right)\left( {{{\sin }^2}\alpha - {{\cos }^2}\alpha } \right) = 1 - 2{\cos ^2}\alpha \\ \Leftrightarrow {\sin ^2}\alpha - {\cos ^2}\alpha - 1 + 2{\cos ^2}\alpha = 0\\ \Leftrightarrow {\sin ^2}\alpha + {\cos ^2}\alpha - 1 = 0\\ \Leftrightarrow 1 - 1 = 0\\ \Leftrightarrow 0 = 0\end{array}\)
Đẳng thức luôn đúng
b) Ta có:
\(\begin{array}{l}\tan \alpha + \cot \alpha = \frac{1}{{\sin \alpha .\cos \alpha }}\\ \Leftrightarrow \frac{{\sin \alpha }}{{\cos \alpha }} + \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{1}{{\sin \alpha .\cos \alpha }}\\ \Leftrightarrow \frac{{{{\sin }^2}\alpha + {{\cos }^2}\alpha }}{{\cos \alpha .\sin \alpha }} = \frac{1}{{\sin \alpha .\cos \alpha }}\\ \Leftrightarrow \frac{1}{{\sin \alpha .\cos \alpha }} = \frac{1}{{\sin \alpha .\cos \alpha }}\end{array}\)
Đẳng thức luôn đúng
a) \({\cos ^2}\alpha + {\sin ^2}\alpha = 1\)
b) \(\tan \alpha .\cot \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}.\frac{{\cos \alpha }}{{\sin \alpha }} = 1\)
c) \(\frac{{{{\sin }^2}\alpha + {{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} = {\tan ^2}\alpha + 1\)
d) \(\frac{1}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha + {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = 1 + {\cot ^2}\alpha \)
a)
\(\sin ^4a-\cos ^4a+1=(\sin ^2a-\cos ^2a)(\sin ^2a+\cos^2a)+1\)
\(=(\sin ^2a-\cos ^2a).1+1=\sin ^2a-\cos ^2a+\sin ^2a+\cos ^2a\)
\(=2\sin ^2a\)
b) \(\sin ^2a+2\cos ^2a-1=(\sin ^2a+\cos^2a)+\cos ^2a-1\)
\(=1+\cos ^2a-1=\cos ^2a\)
\(\Rightarrow \frac{\sin ^2a+2\cos ^2a-1}{\cot ^2a}=\frac{\cos ^2a}{\cot ^2a}=\frac{\cos ^2a}{\frac{\cos ^2a}{\sin ^2a}}=\sin ^2a\)
c)
\(\frac{1-\sin ^2a\cos ^2a}{\cos ^2a}-\cos ^2a=\frac{1}{\cos ^2a}-\sin ^2a-\cos ^2a\)
\(=\frac{1}{\cos ^2a}-(\sin ^2a+\cos ^2a)=\frac{1}{\cos ^2a}-1\)
\(=\frac{1-\cos ^2a}{\cos ^2a}=\frac{\sin ^2a}{\cos ^2a}=\tan ^2a\)
d)
\(\frac{\sin ^2a-\tan ^2a}{\cos ^2a-\cot ^2a}=\frac{\sin ^2a-\frac{\sin ^2a}{\cos ^2a}}{\cos ^2a-\frac{\cos ^2a}{\sin ^2a}}\) \(=\frac{\sin ^2a(1-\frac{1}{\cos ^2a})}{\cos ^2a(1-\frac{1}{\sin ^2a})}\)
\(=\frac{\sin ^2a.\frac{\cos ^2a-1}{\cos ^2a}}{\cos ^2a.\frac{\sin ^2a-1}{\sin ^2a}}\) \(=\frac{\sin ^2a.\frac{-\sin ^2a}{\cos ^2a}}{\cos ^2a.\frac{-\cos ^2a}{\sin ^2a}}=\frac{\sin ^6a}{\cos ^6a}=\tan ^6a\)
f)
\(\frac{(\sin a+\cos a)^2-1}{\cot a-\sin a\cos a}=\frac{\sin ^2a+\cos ^2a+2\sin a\cos a-1}{\frac{\cos a}{\sin a}-\sin a\cos a}\)
\(=\sin a.\frac{1+2\sin a\cos a-1}{\cos a-\cos a\sin ^2a}\)
\(=\sin a. \frac{2\sin a\cos a}{\cos a(1-\sin ^2a)}=\sin a. \frac{2\sin a\cos a}{\cos a. \cos^2 a}=\frac{2\sin ^2a}{\cos ^2a}=2\tan ^2a\)
b) Ta có: \(\sin^2\alpha+\cos^2\alpha=1\)
\(\Leftrightarrow\cos^2\alpha=\dfrac{16}{25}\)
hay \(\cos\alpha=\dfrac{4}{5}\)
Ta có: \(A=5\cdot\sin^2\alpha+6\cdot\cos^2\alpha\)
\(=5\cdot\left(\dfrac{3}{5}\right)^2+6\cdot\left(\dfrac{4}{5}\right)^2\)
\(=5\cdot\dfrac{9}{25}+6\cdot\dfrac{16}{25}\)
\(=\dfrac{141}{25}\)
c) Ta có: \(\tan\alpha=\dfrac{1}{\cot\alpha}=\dfrac{1}{\dfrac{4}{3}}=\dfrac{3}{4}\)
\(D=\dfrac{\sin\alpha+\cos\alpha}{\sin\alpha-\cos\alpha}\)
\(=\dfrac{\dfrac{9}{16}+\dfrac{16}{9}}{\dfrac{9}{16}-\dfrac{16}{9}}=-\dfrac{337}{175}\)
a) khai triển được 2sin2+2cos2=2(sin2+cos2=2.1=2
b)cot2-cos2.cot2=cot2(1-cos2)=cot2.sin2=cos2/sin2.sin2=cos2
c)sin.cos(tan+cot)=sin.cos.tan+sin.cos.cot=sin.cos.sin/cos+sin.cos.cos/sin=sin2+cos2=1
d)tan2-tan2.sin2=tan2(1-sin2)=tan2.cos2=sin2/cos2.cos2=sin2