x2-y2 biết x-y=7;xy=60
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Đặt $y=kx$ với $k$ là hệ số tỉ lệ. $k$ cố định.
Có:
$\frac{1}{9}=y_2=kx_2=3k\Rightarrow k=\frac{1}{9}:3=\frac{1}{27}$
Vậy $y=\frac{1}{27}x$
$y_1=\frac{1}{27}x_1$
Thay $y_1=\frac{-3}{5}$ thì: $\frac{-3}{5}=\frac{1}{27}x_1$
$\Rightarrow x_1=\frac{-3}{5}: \frac{1}{27}=-16,2$
b. Đặt $y=kx$
$y_1=kx_1$
$\Rightarrow -2=k.5\Rightarrow k=\frac{-2}{5}$
Vậy $y=\frac{-2}{5}x$.
$\Rightarrow y_2=\frac{-2}{5}x_2$
Thay vào điều kiện $y_2-x_2=-7$ thì:
$\frac{-2}{5}x_2-x_2=-7$
$\Leftrightarrow \farc{-7}{5}x_2=-7\Leftrightarrow x_2=5$
$y_2=\frac{-2}{5}x_2=\frac{-2}{5}.5=-2$
a)Vì x,y là 2 đại lượng tỉ lê thuận nên:
\(\frac{x_1}{x_2}=\frac{y_1}{y_2}\Leftrightarrow\frac{x_1}{3}=\frac{-\frac{3}{5}}{-\frac{1}{9}}\)
\(\Leftrightarrow\frac{x_1}{3}=\frac{27}{3}\Leftrightarrow x_1=\frac{27\cdot3}{3}=27\)
b)Vì x,y là 2 đại lượng tỉ lệ thuận nên:
\(\frac{y_1}{x_1}=\frac{y_2}{x_2}\Leftrightarrow\frac{-2}{5}=\frac{y_2}{x_2}\Leftrightarrow\frac{x_2}{5}=\frac{y_2}{-2}\)
Áp dụng tc dãy tí
\(\frac{x_2}{5}=\frac{y_2}{-2}=\frac{y_2-x_2}{-2-5}=\frac{-7}{-7}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x_2}{5}=1\Rightarrow x_2=5\\\frac{y_2}{-2}=1\Rightarrow y_2=-2\end{cases}}\)
a: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
nên \(\dfrac{x_1}{3}=\dfrac{-3}{5}:\dfrac{-1}{9}=\dfrac{3}{5}\cdot9=\dfrac{27}{5}\)
hay x1=81/5
b: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\) nên \(\dfrac{x_2}{5}=\dfrac{y_2}{-2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_2}{5}=\dfrac{y_2}{-2}=\dfrac{y_2-x_2}{-2-5}=\dfrac{-7}{-7}=1\)
Do đó: x2=5;y2=-2
x - y = 7
<=> ( x - y )2 = 49
<=> x2 - 2xy + y2 = 49
<=> x2 + y2 - 2.60 = 49
<=> x2 + y2 - 120 = 49
<=> x2 + y2 = 169
<=> x2 + 2xy + y2 - 2xy = 169
<=> ( x + y )2 - 2.60 = 169
<=> ( x + y )2 - 120 = 169
<=> ( x + y )2 = 289
<=> x + y = ±17
x2 - y2 = ( x - y )( x + y ) = 7( x + y )
Với x + y = 17 => x2 - y2 = 7.17 = 119
Với x + y = -17 => x2 - y2 = 7.(-17) = -119