chứng minh 2016^2 + 2016^2 :2017x2 x 2017^2 là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử 2015^2016+2016^2017+2017^2018+2018^2019 là số chính phương
mà 2015^2016+2016^2017+2017^2018+2018^2019 là số chẵn=>2015^2016+2016^2017+2017^2018+2018^2019chia hết cho 4
ta có 2015^2016 ≡ (-1)^2016 (mod 4); 2016^2017 chia hết cho 4; 2017^2018 ≡ 1^2018 (mod 4); 2018^2019 ≡ 2^2019
=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ (-1)^2016+1^2018+2^2019 (mod 4)
<=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ 1+1+2^2019(mod 4)
ta có 2^2019=4x2^2017 chia hết cho 4
=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ 2 (mod 4) vô lí
=> điều giả sử sai
=>ĐPCM
ta chứng minh Q là nình phương của 1 số
ta thấy 20162+2016220172+20172=20162+20162(2016+1)2+(2016+1)2=20162+(2016+1)2(20162+1)=20162+(20162+1)(20162+2.2016+1)
=20162+(20162+1)2+(20162+1)2.2016=(2016+20162+1)2
vậy Q=\(\sqrt{\left(2016+2016^2+1\right)^2}\)=2016+20162+1
Tham khảo đề bài và cách làm nha bạn !
Đề bài : chứng minh số 1^3+2^3+3^3+...+10^3 là số chính phương .
Giải
Ta có : 13 + 23 + 33 + ... + 103= 102 . (10 + 1 ) 2 \(⋮\) 4 = 4. 52 .112\(⋮\)4 = 52 . 112 = (5.11 )2= 552 là số chính phương
\(1^3+2^3+3^3+...+2016^3\)
\(=2016^2.\left(2016+1\right)^2\)
\(=2016^2.2017^2\)
\(=\left(2016.2017\right)^2\) là số chính phuong
ti.k nhanh nha bn
THAM KHẢO LICK NÀY NHA :
https://h.vn/hoi-dap/question/783892.html
a) 7 chia hết cho 7
7^2 chia hết cho 7
7^3 chia hết cho 7
.....
7^1000 chia hết cho 7
\(\Rightarrow\)A chia hết cho 7(1)
7 không chia hết cho 7^2
7^2 chia hết cho 7^2
7^3 chia hết cho 7^2
..
7^1000 chia hết cho 7^2
\(\Rightarrow\)A không chia hết cho 7^2(2)
Từ (1) và (2)\(\Rightarrow\)A không phải là số chính phương
b) Ta thấy: 20^2016 có tận cùng là0
11^2017 có tận cùng là 1
2016^2018 có tận cùng là 6
\(\Rightarrow\)B có tận cùng là 7
\(\Rightarrow\)B không phải là số chính phương
Ta có : \(A=7+7^2+7^3+7^4+...+7^{100}\)
\(A=7+7.7+7^2.7+7^3.7+...+7^{99}.7\)
\(A=7\left(1+7+7^2+7^3+...+7^{99}\right)\)
Vì : \(7⋮7\Rightarrow7\left(1+7+7^2+7^3+...+7^{99}\right)⋮7\)
Tức là \(A\) là số chính phương
Ta có A= 1/2015 + 2/2016 + 3/2017 + ... +2016/4030- 2016
A= 2015-2014/2015 + 2016-2014/2016 +...+4030-2014/4030-2016
A= 2015/2015-2014/2015+ 2016/2016-2014/2016 + ..... +4030/4030-2014/4030 -2016
A= 1-2014/2015 + 1-2014/2016 +....+1-2014/4030 -2016
A= (1+1+1+1+........+1) -(2014/2015+2014/2016+......+2014/4030) -2016
A=2016 - 2014.(1/2015+1/2016+....+1/4030) -2016
A= (2016 - 2016 ) - 2014. ( 1/2015+1/2016+.....+1/4030)
A=-2014.(1/2015+1/2016+....+1/4030)
mà B = 1/2015+1/2016+....+1/4030
nên A : B = -2014
Đặt B = \(2016^2+2016^2\cdot2017^2+2017^2\)
B = \(2016^2+2016^2\cdot\left(2016+1\right)^2+\left(2016+1\right)^2\)
B = \(2016^2+2016^4+2\cdot2016^2\cdot2016+2016^2+\left(2016+1\right)^2\)
B =\(2016^2+\left(2016^2+2016\right)^2+\left(2016+1\right)^2\)
B = \(\left(2016+1\right)^2\left(2016^2+1\right)+2016^2\)
B = \(2017^2\left(2017^2-2\cdot2016\right)+2016^2\)
B = \(2017^2-2\cdot2017^2.2016+2016^2\)
B = \(\left(2017^2-2012\right)^2\)
=> A = \(\sqrt{\left(2017^2-2016\right)^2}\)
A = \(2017^2-2016\)
Thuộc N => A là số tự nhiên